
DeepScheduling: Grid Computing Job
Scheduler based on Deep Reinforcement
Learning

Lucas C. Casagrande, Guilherme P. Koslovski, Charles C. Miers, and Maurı́cio A.
Pillon

Abstract Grid systems are large-scale platforms which consume a considerable
amount of energy. Several efficient resource/power management strategies were pro-
posed by the specialized literature. However, most of the proposed strategies are
rule-based policies which do not exploit workload patterns. Deploying the same set
of rules on systems using different usage patterns, and platform settings, may lead to
a sub-optimized setup. Due to the complex nature of grid systems, tailoring such a
system-specific policy is not a straightforward task. In this paper, we explore a Deep
Reinforcement Learning (DRL) method to build an adaptive energy-aware schedul-
ing policy. We trained our algorithm using real workload traces from Grid’5000
platform. Our experiments pointed out an energy setup saving up to 7%, as well
as average requests waiting time reduction of 27%. Finally, the results clarify the
importance of explore the workload to build system-specific policies.

Key words: Deep Reinforcement Learning, Energy-Aware Scheduling, Grid

1 Introduction

Grid computing is an outstanding paradigm for provisioning geographical-distributed
computing, store, and networking to compute-intensive applications. Specifically,
Virtual Organization (VO) groups can be composed of different resource providers
establishing a sharing relationship which will rule the discovery, allocation, and
sharing of its local resources. Grid platform sizes can vary its computing resources
from a few hundred to thousands, through incorporating more providers to its
VO [21].

Lucas C. Casagrande · Guilherme P. Koslovski · Charles C. Miers ·Maurı́cio A. Pillon
Graduate Program in Applied Computing, Santa Catarina State University, Joinville, Brazil
lucas.casagrande@edu.udesc.br, {guilherme.koslovski, charles.miers, mauricio.pillon}@udesc.br

1

2 Casagrande et al.

Sharing resources to compose large-scale platforms is an appealing choice to
increase the computing power available with minimal capital investments, allowing
users to explore deeper levels of parallelism to handle complex problems. However,
the sharing complexity and operational costs increase proportionally [7]. Computing
resources consumes considerable amounts of energy when powered on, and this
consumption increases almost linearly to resource utilization. Considering the size
of a grid platform, the energy consumption can become prohibitive, compromising
sustainable aspects of grid platforms if not properly tackled [5, 8].

Optimizing energy does not involve only the choice of the most power-efficient
hardware but it is also intrinsically related to the resource management strategy. At
the platform level, shutdown strategies exploit the times between jobs to minimize
the number of idle nodes by turning them off, while at the job level (user’s perspec-
tive), Dynamic Voltage Frequency Scaling (DVFS) strategies exploit the times when
jobs are not executing computation-intensive tasks by scaling down the processor
frequency [15]. The complex nature of grid systems motivated the development of
simple and scalable rule-based policies which usually do not take into account the
job submission patterns. Furthermore, using the same set of rules on systems with
different infrastructures and usage patterns leads to an under-optimized setup [11].
For example, if the inter-arrival time between job submissions is small, it may not
worth immediately switch-off nodes because the cost of switching can surpass the
cost of just let it idle. Therefore, for better applicability, it must consider both the
current workload on the system and the platform setup [14]. The same can be stated
about the scheduling policy. There are policies best suited for specific usage patterns
which also depends on the workload being executed. However, tailoring system-
specific policies is not a straightforward task due to the fact of the workloads can
suddenly change within days [11].

In order to address these issues, we propose a novel energy-aware scheduling pol-
icy that uses DRL to learn a system-specific policy. DRL methods learn a policy by
interacting with a simulated environment through a trial-and-error procedure. The
agent starts with no knowledge, each decision-making results on a stimulus (called
reward) transmitting the quality of its actions on each of the observed states. Based
on this stimulus, the agent tries to maximize its expected future reward by reinforc-
ing the tendency to repeat the actions that led it to the most rewarded states [20].

Our DRL approach guides the jobs scheduler to optimize both perspectives, en-
ergy, and performance. Thus, we build an environment to simulate the Resource
and Job Management System (RJMS) behavior. The environment is fed with real
workload traces collected from Grid’5000 testbed [1]. In order to verify the gen-
eralization of our approach, we divided the traces into training and testing sets. We
performed several experiments on both sets, the results were compared to rule-based
scheduling policies which are commonly deployed on grid computing platforms.

This paper is organized as follows. Section 2 presents related work, Section 3
explains our formal notation. Section 4 details the problem formulation, and the
learning method used. Section 5 describes the evaluation methodology. Section 6
presents the results, and discusses the policy learned by our method.

DeepScheduling: Grid Computing Job Scheduler 3

2 Related Work
The specialized literature covers trained Reinforcement Learning (RL) agents to
detect subtle changes in the workload, adapting the management platform [9, 13].
Moreover, commonly used RL methods (e.g., Q-learning, and SARSA) share a firm
theoretical background. However, in complex problems using a large state space,
simple RL mechanism are inefficient to learn an optimal policy without manual
work on the reduction of the problem scope [16]. Given this limitation, some works
apply DRL methods combining RL and Deep Learning (DL) to approximate a so-
lution. This is the case of the DeepRM [12], which uses the REINFORCE method
and a Deep Neural Network (DNN) to train an agent capable of scheduling jobs in
order to minimize the slowdown. The main differences to our work are we evaluate
our method using real workload traces and platform configuration, while DeepRM
employed only a limited synthetic workload and platform.

DRL and DNN are also employed to train a workflow scheduler [10]. Instead
of using a simple DNN, [10] implemented a pointer network to perform scheduling
decisions, using information about the failure probability of each task, similar to our
confidence level (Subsection 4.1).

In turn, DRL-Cloud uses Deep Q-Networks (DQNs) to train an agent to deal
with the resource provisioning and task scheduling [4]. The main objective of DRL-
Cloud is to minimize the energy cost in cloud computing providers, drastically dif-
fering from our workload and problem formulation. In grid computing a node can
be individually provisioned for a user, while in cloud computing a single node can
instantiate multiple Virtual Machines (VMs) from distinct users. Although there are
plenty of different DRL-based schedulers, we identified a lack of studies specific for
grid computing. In addition, most of the reviewed works are environment-specific,
missing experiments using real workload and platform configurations. Thus, we pro-
pose a novel DRL-Based scheduler suited for grid computing and evaluate it with
traces collected from a real grid platform.

3 System Model
Our experiments are based on the models from SimGrid [3] (grid system simulator),
and Batsim [6], (RJMS simulator which uses SimGrid in the background).

3.1 Platform Model

Grid computing platforms can be described as a set of resources clustered in mul-
tiple geographically distributed sites. Users request a site, a cluster, a server, a pro-
cessor or just a single core. Due to the fact of a core being the minimum a user
can request, we characterized these resources as: (i) the computing capacity cpur,
expressed in flop/s; (ii) the current state sr; and (iii) the current power consump-
tion, expressed in watts. In order to allow a coarse-grained control of resources, we

4 Casagrande et al.

defined servers as independent clusters which own an unique set of resources with
the same computing capacity and power profile. Servers can only be switched-off if
(and only if) all of its resources are idle and only idle resources can start computing
new jobs. Therefore, if a server is off it must be first initialized before attend to new
users requests. A server is idle only when all of its resources are idle in the same
way that it is computing if at least one of its resources is computing. The intercon-
nection network was simplified, it is not take into account and the data transfers
among resources of different servers occurs instantaneously. Finally, we follow the
architecture design of Grid’5000 testbed and the platform is composed only by ho-
mogeneous resources. Figure 1 illustrates an example of the resource model and the
transitions between states.

Fig. 1 Transitions between resource states and relative power consumption.

The power profile adopted (Figure 1) is based on experiments conducted on the
Taurus cluster of Grid’5000 [17, p. 68] and are extensively used throughout this
work to support the examples and experimental analysis. Following the Figure 1, a
resource r can be in one (and only one) of the following states in a given time t,
sr(t) ∈ S = {computing, idle,o f f ,on→ o f f ,o f f → on}. Each state has an associ-
ated power profile denoted by Ps and is expressed in watts. From the Figure 1, when
the resource is computing it consumes Pcomputing = 190W, and while it remains idle
it consumes Pidle = 95W on average.

Resources cannot be shared, meaning each job uses 100% of its allocated com-
puting resources capacity. Idle resources can be switched off, which takes time
ton→o f f and consumes Pon→o f f . Powered off resources must be switched on to start
handling new jobs, which also takes time to f f→on and consumes Po f f→on. Thus, the
energy consumption of a resource r depends only on its current state at time t and
is given by Er(t) =

∫
Pr

s (t)dt, expressed in joules. In this sense, the total energy
consumption of the platform G is given by EG(t) = ∑r∈R Er(t).

3.2 Workload Model

In this work, the workload is composed of parallel and rigid jobs (J) online sub-
mitted and executed in batch mode. For each job j ∈ J, we consider the following
characteristics: (i) the arrival time r j (known at submission time); (ii) the number
of requested computing resources q j; (iii) the expected processing time wall j in-
formed by the user (also called walltime); and (iv) the actual processing time p j
(known when the job finishes). In order to fully reproduce the behavior of the jobs
in the traces, we defined the required amount of computation for a job j, expressed
in flop/s, is a function of its processing time p j and of the computing capacity cpur

DeepScheduling: Grid Computing Job Scheduler 5

of the allocated resources. Formally, this is given by cpu j = p j ∗cpur. Parallel jobs,
which require more than one resource, the same amount of cpu j is equally accounted
for each allocated resource, resulting in the same given p j. The RJMS does not
know this information until the job finishes, when the job normally ends or when
the walltime is reached. In either way, a job cannot be preempted, and the provi-
sioned resources are only released when it is finished. In this sense, the wall j can be
interpreted as an upper bound limit on the job j execution time.

4 DRL-based Scheduling

4.1 Problem Formulation

The learning phase occurs through the interaction of the agent with an environment,
defined as a Markov Decision Process (MDP). A MDP is a mathematical frame-
work for decision-making tasks which defines a tuple M = (S,A,T,R), in which S
is a finite state space, A 6= /0 is a finite set of actions, T : S×A→ [0,1] is a transition
function and R : S×A× S→ R is an action-dependent reward function [20]. Fol-
lowing this framework, we assume the transition function is unknown and formulate
the grid scheduling as follows:
State Space: The state s(t) at time t is the union of the current queue state sq,
the current RJMS scheduling agenda sa, and of the n past observations of the sys-
tem state sp(t) = [sp

t−n, ...,s
p
t−1,s

p
t]. The system state includes information about: the

number of current reserved resources; the total number of jobs in the queue; the
current simulation time; and an indicative of the number of resources sk in each
state, i.e., sk = [|ro f f |, ..., |rcomputing|]. In this way, the agent can observe the elapsed
time to a resource switch on-off and how much the queue is increasing within the
time window (defined by n). Furthermore, the queue state includes information on:
the number of resources requested q j; the expected processing time wall j given by
the user; and a confidence level which is the mean of the ratio between the actual
processing time and the expected processing time of u past job submissions. Basi-
cally, the confidence level indicates the probability of the job j is going to execute
less than the expected processing time. Lastly, the RJMS agenda includes informa-
tion about jobs being executed, which are: the number of allocated resources; the
remaining time based on the given expected processing time; and an estimation of
the remaining time based on the confidence level.
Action Space: At each time step, the scheduler can select any of J jobs in the queue.
Therefore, the action space is given by A = {a|a ∈ {θ ,1, ..., |J|}} in which a = 1 in-
dicates the agent must schedule the first job in the queue, and a = θ means no job
must be scheduled. In order to allow multiple scheduling decisions at a single time
step, we freeze the simulation time when the agent is scheduling the jobs. The sim-
ulation proceeds only when a = θ or when the agent takes an invalid action, which
occurs when a job cannot be scheduled because there is no resources available. Thus,
we simplify the training phase by reducing the action space.

6 Casagrande et al.

Reward Function: The reward function was designed to minimize the number of
idle nodes while not degrading the overall performance. We formulate the reward
function as a linearly-weighted combination of three metrics (Equation 1):

R =−ρ×|Nidle|+σ ×∑
j∈Q

−1
wall j

+ τ×µ (1)

This reward penalizes the agent proportionally to the number of current idle
nodes (|Nidle|), and the number of jobs in the queue Q was normalized by its ex-
pected processing time wall j. The mechanism saves energy by minimizing the set
of active servers and the average slowdown (prioritizes small jobs). Furthermore,
to encourage the agent to schedule the jobs, we give a bonus proportional to the uti-
lization rate (µ ,) which is the number of current computing resources. Parameters
(ρ , σ , and τ) are adjustable weights for each of the mentioned perspectives.

4.2 Learning Method

The Proximal Policy Optimization (PPO) method [19] was adopted to train the agent
through an actor-critic approach, in which N parallel actors are responsible for the
decision-making, and a critic estimates the value of each observed state to evaluate
actors’ decisions. The policy and the value function are represented by artificial neu-
ral networks, differing in that the actors’ network outputs a probability distribution
over all possible actions, while the critic network applies a linear function.

The core idea is to increase the probability of selecting the actions which are bet-
ter than the expected return estimated by the critic. The algorithm works as follows:
(i) the actors collect experiences by individually running a policy πθold for T time-
steps while the critic estimates the value of each observed state [V (s1), ...V (sT)]; (ii)
given the experiences and the critic estimations, an advantage function Ât tells the
agent how much better its decision-making was facing to what is actually known;
(iii) based on this signal a surrogate loss L(θ) is computed and optimized according
to θold for K epochs. Then, the actors use the optimized policy πθ to collect new
experiences and the whole procedure is repeated.

The surrogate loss used by the PPO method is defined in Equation (2). This
function modifies the first term by clipping rt(θ) at 1− ε or 1+ ε , based on the
Ât estimation. Formally defined in Equation (3), rt(θ) gives the ratio between the
policy with the actual parameter vector θ and the old parameter vector θold , used to
collect the experiences.

L(θ) = Êt [min(rt(θ)Â,clip(rt(θ),1− ε,1+ ε)Ât] (2)

rt(θ) =
πθ (at |st)

πθold (at |st)
(3)

Consequently, changes which would make the objective improve beyond the
clipped value are simply ignored, and the same experiences collected by a policy
πθold can be used to perform multiple steps of optimization without completely de-
stroying the policy due to large updates [19].

DeepScheduling: Grid Computing Job Scheduler 7

5 Evaluation Methodology

5.1 Metrics

The performance of each scheduling policy was evaluated based on three metrics.
The first one is the total amount of energy spent by idle and switching nodes. Idle
and switching nodes consume non-negligible amounts of energy while they are nei-
ther serving providers nor users’ needs. Furthermore, the waste of energy increases
proportionally to the time nodes were idle and to the number of shutdown events.
Thus, these metrics presents how much energy was completely wasted, and can be
used as an indicator of the policy energy-efficiency.

The second metric is the waiting time, which measures the time a job j waited
in the queue, as given by Equation (4). This is a job-oriented metric and its average
serve as an indicator of the performance of the system. Specifically, start j is the
time the job j was scheduled to start. A problem with the waiting time is it does not
present any distinction between jobs with different execution times. Therefore, it is
not useful as an indicator of scheduler fairness. Keeping this is mind, a commonly
used metric is the slowdown, which measures the ratio between the time that a job
spent on the system (wait j + p j) and its actual processing time (p j). However, the
slowdown does not take into account the number of resources requested by each
job. Thus, for the parallel batch scheduling problem the per-processor slowdown
(pp− sld) is a more appropriate metric [2], given by Equation (5).

wait j = start j− r j (4)

pp− sld j = max(
wait j + p j

q j× p j
,1) (5)

The interpretation of the pp-slowdown is the waiting time of a job j must be
proportional to the time it spent executing on the allocated resources. Therefore, by
considering these three metrics we can evaluate the energy-efficiency, performance,
and fairness perspectives.

5.2 Simulation Setup

We simulate the behavior of a RJMS using an extended-version of Batsim, called
GridGym1. The extension added the OpenAi Gym framework providing grid-
specific environments suited for RL tasks. We followed the models described in
Section 3 to setup GridGym and implemented a timeout policy to switch-off servers
after 5 minutes of idling time, which corresponds to the inter-arrival time we char-
acterized a sequential job. Thus,it is possible to identity the impact of executing
immediate scheduling decisions on energy consumption.

Real workload traces were used to evaluate the policies, the platform configura-
tion follows the original hardware settings2, as per-cluster summarized on Table 1.
The traces were organized in a daily-basis, and only days which had at least two job

1 Information available on https://github.com/lccasagrande/GridGym
2 Information available on https://www.grid5000.fr/w/Hardware

8 Casagrande et al.

submissions were considered. For each trace, it was removed the jobs which did not
execute, requested a larger amount of resources than the ones offered by the cluster,
or set an invalid walltime. Moreover, the traces were grouped (on each cluster) into
five categories as function of the occurrences of sequential job submissions on that
day. The last five columns of Table 1 shows the number of days for each of these
groups. Formally, sequential job submissions are separated by a small period of time
(less than 5 minutes). Such jobs can increase the energy consumption of a platform
by forcing the RJMS to turn on nodes for hosting them. Therefore, by splitting the
traces we can mitigate the eventual over-fitting on specific workloads.

Table 1 Real workload traces from GRID’5000 used for evaluation.

Cluster Period # Cores # Jobs Seq. Jobs % Util. % Group
#1 #2 #3 #4 #5

Orion 10/12 - 10/19 48 66,005 39.7 % 62.7 % 659 777 496 129 28
Graphite 12/13 - 10/19 64 60,786 56.0 % 47.3 % 487 705 427 149 24
Econome 04/14 - 10/19 352 66,557 66.8 % 57.6 % 259 520 504 271 39

In order to evaluate the performance, we compared our proposal to three com-
monly used scheduling policies: (i) First-Fit schedules the first job ready to execute;
(ii) EASY schedules jobs in a FIFO order and use a backfilling mechanism to handle
jobs in the queue which can immediately start without delaying the next first job;
and (iii) a Smallest Estimated Area First (SAF) policy as a variation of the EASY
sorting the backfilling queue based on the estimated area of each job j given by
wall j ∗ q j. Each scheduling policy has the same view of the system. We scaled up
the time in the traces to minutes to accelerate the training and evaluation process.
Therefore, the simulation time proceeds in one minute after the scheduler finishes
its procedure. This process occurs only when there are jobs in the queue. Otherwise,
the simulation goes to next event time, i.e., a new job submission / shutdown event.

5.3 DRL Parameters
During the training phase, were instantiates 16 parallel actors to collect experiences.
The actor and critic networks are independent but follow the same architecture.
This architecture is similar to a sequence-to-sequence (seq2seq) model, composed
of an encoder and a decoder. In order to simplify and speed up learning, we do not
implement the decoder and the hidden state vector of the encoder is passed through
a dense layer in a sequence-to-element architecture. Thus, the network configuration
consists of three parallel Gated Recurrent Unit (GRU) layers with 64 units each that
are followed by a dense layer with 128 units. Each of the GRU layers is responsible
for handling a specific input of the observation given by the environment, which
are: a sequence of the first 20 jobs in the queue; a sequence of the 20 earliest jobs
to be finished, given by the RJMS agenda; and the last 20 snapshots of the system
state. This sequence size is not limited to our single choice and could be increased.
Through simple tests, we found these values suitable to demonstrate the potential
of DRL-Based schedulers. Moreover, information about the time required to switch
nodes On-Off is also encompassed into the last 20 snapshots of the system.

DeepScheduling: Grid Computing Job Scheduler 9

Regarding the PPO method parameters, we used the Generalized Advantage Es-
timator (GAE) [18] as the advantage function with the discount factor γ set to 0.97
and the λ set to 0.95. The ε parameter of the surrogate loss (Equation 2) is 0.20.
The algorithm is trained for 25 million timesteps and the optimization is done ev-
ery 360 timesteps for 6 epochs with a batch size of 180. Regarding the weights of
the reward function, we set both ρ and σ to 1 while the τ is set to 0.2 which, is in
accordance with the idling time defined on the timeout policy (Section 5.2). Conse-
quently, scheduling decisions initiating an off server will be compensated if the job
executes for at least the defined idling time on the timeout policy.

6 Results & Discussion
Figure 2 plots the cumulative daily average energy waste, waiting time, and pp-
slowdown for each cluster trace. The results for DeepScheduler are the mean of
ten consecutive experiments, and the middle solid lines represent the cumulative
average of the respective metric, while the vertical dashed lines separate the training
and testing results. Thus, to minimize the effect of outliers on the job-centric metrics
(waiting time and pp− slowdown), we present only the scheduling results within
the 10-90 percentile range. Finally, the cumulative maximum and minimum values
are represented by the upper and lower horizontal dashed lines.

Fig. 2 Cumulative daily average energy waste, waiting time and pp-slowdown for each trace.

DeepScheduler was able to achieve better energy savings on most of the traces
when compared to the other policies (Figure 2). In Orion and Graphite experiments,
DeepScheduler achieved energy savings up to 6.5–7.0% respectively, while on the
Econome trace DeepScheduler spent 2.9% more energy than EASY and SAF. As
expected, the energy efficiency of the SAF, EASY and First-Fit scheduling policies
are quite the same. These policies are not energy-aware, therefore we do not expect
it to be much different from each other.

10 Casagrande et al.

Comparing the average waiting time, the DeepScheduler was acting more likely
to a First-Fit policy. Both SAF and EASY scheduling policies had poor results and
the First-Fit seems the best scheduling policy to apply on the selected traces. The
DeepScheduler was able to learn and provide better results than First-Fit on some
days. On average, the DeepScheduler minimized the average waiting time by 5.8%
in comparison to the First-Fit and by 27% in comparison to the SAF and EASY poli-
cies. One point that is worth noticing is how much energy can be saved while keep-
ing better or equal performance if a system-specific policy is chosen. On Graphite
and Orion traces, the DeepScheduler was able to both save energy and improve the
performance of the system.

Regarding the fairness metric, it was noted a subtle performance downgrade on
the results using the SAF and EASY scheduling on the Econome traces. The main
reason behind this is both (SAF and EASY) scheduled the jobs in a First Come
First Served (FCFS) order. Therefore, if the first job in the queue has requested all
the resources available for a long time (i.e., 20 hours) the slowdown of the remain-
ing jobs will inflate the metrics. Thus, to overcome this situation, one must change
the ordering policy and implement another mechanism to prevent starvation, let as
future work. Furthermore, in the Econome traces, there were only 9 days that the
load surpassed 300% of the platform capacity which, represents less than 1% of
the workloads, and were considered outliers. However, we decided to include these
traces to check if the DeepScheduler could surpass this limitation without any man-
ual work. Indeed, its performance on the Econome trace was better while on the
other traces it presents similar results to the First-Fit policy.

An important question that raises with DRL-Based scheduling policies concerns
the behavior learned by the agent. To give an insight into this point, Figure 3 presents
the slowdown distribution for all jobs of each scheduling policy for each trace.

Fig. 3 Distribution of the slowdown values for each trace.

The jobs were separated into buckets in function of its slowdown (Figure 3).
DeepScheduler exhibits a high concentration of jobs with slowdown values whiting
the 1–5 range while there is a low concentration of jobs with a slowdown of 1. A
characteristic of the used traces is the high percentage of sequential jobs which were
submitted within 5 minutes and mostly finished prematurely. Thus, it makes sense
to delay some jobs in the expectation that a job running will release its resources
prematurely in order to minimize the number of active resources. Following this

DeepScheduling: Grid Computing Job Scheduler 11

principle, the DeepScheduler delays more jobs than the other policies in order to
optimize its energy savings.

Delaying some jobs in order to save energy is interesting but there is no guar-
antee of a job will finish its execution prematurely. Moreover, this strategy must be
taken with caution to not considerably degrade the system performance for nothing.
Figure 4 presents the plot of the slowdown values for all sequential jobs of each
scheduling policy, it clarifies how the DeepScheduler is deciding to delay the jobs.
In order to diminish the effect of outliers, the InterQuartile Range (IQR) rule was
applied and only slowdown values within 1.5 x IQR were considered.

Fig. 4 Slowdown values for all sequential jobs.

Figure 4 allows to observe DeepScheduler exhibits the highest slowdown values
for the sequential jobs on all traces while the First-Fit policy gives the lower values.
Therefore, we can argue that the DeepScheduler is waiting before taking a schedul-
ing decision and the sequential jobs are the most prone to be delayed. By not taking
immediate decisions, the scheduler can explore other alternatives that may occur
when a job finishes prematurely or a small job in length is submitted within the next
minutes. DeepScheduler was able to learn how to behavior following this principle.

7 Considerations & Future work
In this paper, we explored a DRL method as an alternative to build an adaptive
energy-aware scheduling policy. By exploiting the workload patterns and tailoring a
system-specific policy, better energy savings were achieved in comparison to com-
monly used rule-based policies. Our results indicate a DRL-based scheduling policy
is a feasible choice when compared to traditional schedulers. As future work, we
will address specific workloads based on a variant degree of sequential jobs.

Acknowledgements This study was supported by FAPESC, UDESC, and LabP2D. Experiments
were carried out on the GRID’5000 testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as well as other organizations.

References

1. Bolze, R., Cappello, F., Caron, E., Dayd, M., Desprez, F., Jeannot, E., Jgou, Y., Lanteri, S.,
Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, E.G.,
Touche, I.: Grid’5000: A large scale and highly reconfigurable experimental grid testbed. The
International Journal of High Performance Computing Applications 20(4), 481–494 (2006)

12 Casagrande et al.

2. Carastan-Santos, D., Yokoingawa De Camargo, R., Trystram, D., Zrigui, S.: One can only gain
by replacing easy backfilling: A simple scheduling policies case study. In: Cluster, Cloud and
Grid Computing (CCGrid), 2019 19th IEEE/ACM International Symposium on (2019)

3. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable, and accu-
rate simulation of distributed applications and platforms. Journal of Parallel and Distributed
Computing 74(10), 2899–2917 (2014)

4. Cheng, M., Li, J., Nazarian, S.: Drl-cloud: deep reinforcement learning-based resource provi-
sioning and task scheduling for cloud service providers. In: Proceedings of the 23rd Asia and
South Pacific Design Automation Conference, pp. 129–134. IEEE Press (2018)

5. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: A survey. IEEE
Communications Surveys & Tutorials 18(1), 732–794 (2016)

6. Dutot, P.F., Mercier, M., Poquet, M., Richard, O.: Batsim: a realistic language-independent
resources and jobs management systems simulator. In: Job Scheduling Strategies for Parallel
Processing, pp. 178–197. Springer (2015)

7. Galizia, A., Quarati, A.: Job allocation strategies for energy-aware and efficient grid infras-
tructures. Journal of Systems and Software 85(7), 1588 – 1606 (2012). Software Ecosystems

8. Hinz, M., Koslovski, G., Miers, C., Pilla, L., Pillon, M.: A cost model for iaas clouds based
on virtual machine energy consumption. Journal of Grid Computing 16(3), 493–512 (2018)

9. Hussin, M., Hamid, N.A.W.A., Kasmiran, K.A.: Improving reliability in resource manage-
ment through adaptive reinforcement learning for distributed systems. Journal of parallel and
distributed computing 75, 93–100 (2015)

10. Kintsakis, A.M., Psomopoulos, F.E., Mitkas, P.A.: Reinforcement learning based scheduling
in a workflow management system. Engineering Applications of Artificial Intelligence 81, 94
– 106 (2019)

11. Legrand, A., Trustram, D., Zrigui, S.: Adapting batch scheduling to workload characteristics:
What can we expect from online learning? In: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 686–695 (2019)

12. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforce-
ment learning. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp.
50–56. ACM (2016)

13. Moghadam, M.H., Babamir, S.M.: Makespan reduction for dynamic workloads in cluster-
based data grids using reinforcement-learning based scheduling. Journal of computational
science 24, 402–412 (2018)

14. Orgerie, A., Lefvre, L., Gelas, J.: Save watts in your grid: Green strategies for energy-aware
framework in large scale distributed systems. In: 2008 14th IEEE International Conference on
Parallel and Distributed Systems, pp. 171–178 (2008). DOI 10.1109/ICPADS.2008.97

15. Orgerie, A.C., Assuncao, M.D.d., Lefevre, L.: A survey on techniques for improving the en-
ergy efficiency of large-scale distributed systems. ACM Computing Surveys (CSUR) 46(4),
47 (2014)

16. Orhean, A.I., Pop, F., Raicu, I.: New scheduling approach using reinforcement learning for
heterogeneous distributed systems. Journal of Parallel and Distributed Computing 117, 292–
302 (2018)

17. Poquet, M.: Simulation approach for resource management. Theses, Université Grenoble
Alpes (2017). URL https://tel.archives-ouvertes.fr/tel-01757245

18. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015)

19. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017)

20. Sutton, R.S., Barto, A.G., Williams, R.J.: Reinforcement learning is direct adaptive optimal
control. IEEE Control Systems 12(2), 19–22 (1992)

21. Vicat-Blanc Primet, P., Anhalt, F., Koslovski, G.: Exploring the virtual infrastructure service
concept in Grid’5000. In: 20th ITC Specialist Seminar on Network Virtualization. Hoi An,
Vietnam (2009)

