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Abstract—Virtualization of computing and communication in-
frastructures were disseminated as possible solutions for net-
works evolution and deployment of new services on cloud
data centers. Although promising, their effective application
faces obstacles, mainly caused by rigidity on the management
of communication resources. Currently, the Software-Defined
Networks (SDN) paradigm has been popularizing customiza-
tion and flexibility in network management due to separation
of control and data planes. However, benefits introduced by
SDN are not trivially applied to Virtual Infrastructures (VIs)
provisioning on SDN-based cloud providers. An allocation
mechanism needs joint information of control and data planes
in order to deliver Quality-of-Service (QoS)-aware mappings
while achieving provider objectives. In this work, we formulate
the online VI allocation on SDN-based cloud data centers as a
Mixed Integer Program (MIP). Following, integer constraints
are relaxed to obtain a linear program, and rounding tech-
niques are applied. The mechanism performs VI allocation con-
sidering latency, bandwidth, and virtual machine requirements.
The results indicate that the VIs mean internal latency can be
reduced while simultaneously enforcing other QoS constraints.

1. Introduction
Cloud Computing has revolutionized the provision-

ing of computing and networking services. Particularly,
Infrastructure-as-a-Service (IaaS) providers have used vir-
tual networking technologies to deliver VIs [1]. A VI is com-
posed of Virtual Machines (VMs) interconnected by virtual
networking resources, where the number of virtual resources
(e.g., machines, switches, and links) and their configuration
(e.g, processing and bandwidth) can be dynamically adjusted
based on hosted application requirements.

Network configuration and management are critical tasks
in IaaS clouds. VI-hosted applications are responsible for
large volumes of network traffic while an expressive por-
tion of its running time is due to network activity. For
instance, a Facebook cluster can go up to 33% of its running
time only making data transfers [2] while under-provisioned
virtual networks can drastically affect hosted application
performance [3]. The application of network virtualization
techniques is a driven force to efficiently provide VIs [4] [5].
Recently, existing VIs deployment obstacles caused by the
inflexibility of network equipments have been addressed
by the SDN concept. SDN promoted network reorganiza-
tion removing the exclusive control traditionally built-in on

network equipment. A logically-centralized controller, with
knowledge of the data center topology and load, is responsi-
ble for network-traffic engineering [6]. Although promising,
the application of SDN techniques as a driven force to
implement virtualized cloud data centers is a challenging
task. SDN has added new dimensions on data center man-
agement: flows forwarding delay; dynamic virtual topology
creation; bandwidth sharing; CPU isolation on switches;
and switching tables sharing [7] [8]. Moreover, tenants can
optionally deploy private SDN controllers to orchestrate VIs.

In this context, the present work addresses the allo-
cation of SDN-based resources for hosting VIs. The VIs
allocation problem, with constraints on virtual resources and
topology, belongs to the set of NP-hard problems as other
problems already proven to be in this set may be reduced to
it [9] [10]. Specifically, an SDN-based formulation increases
the VI allocation complexity in three main axis. (i) New
constraints on physical switches capacities are introduced:
SDN switches have a size-limited flow-table (eventually,
allocated flows must be replaced by new flows). (ii) Flow-
table misses: as a virtual resource can be placed anywhere
on a virtualized cloud data center, any flow latency is
increased by at least one Round-Trip Time (RTT) to the
controller when a flow-table miss is triggered. (iii) Sharing
network resources with QoS requirements: while traditional
IaaS allocation mechanism enforces a best-effort network
sharing, SDN enables the use of network sharing policies
increasing the performance of VM-hosted applications.

Literature comprises several mechanisms to find optimal
and approximated solutions for VI allocation [10] [11] [12].
In most cases, mechanisms solve only the allocation of
virtual networks without tackling virtual processing and
switching resources. Some proposals have advanced the field
by adapting virtual network formulations to SDN-based data
centers [13] [14] [15] [16] [17], despite not considering the
particularities of IaaS cloud data centers. In short, we make
three main contributions in this paper:

• We formulate the online VI allocation in SDN-based
cloud data centers as an optimal MIP. Our formu-
lation considers the main management challenges
introduced by SDN, modelling controllers, latency,
bandwidth, and switch constraints.

• MIP constraints are relaxed to obtain a linear pro-
gram and rounding techniques are applied to propose
an acceptable solution. The heuristic innovates by
selecting candidates for hosting VIs based on SDN



particularities, in addition to VM constraints.
• Results simulating the application of the proposed

mechanism for allocating VI requests atop a cloud
data center interconnected by a fat-tree topol-
ogy [18]. The evaluation quantifies provider-based
metrics and tenants perspective.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines challenges on VI allocation atop SDN-based
data centers. Section 3 discusses related work. Section 4
defines and formulates the VIs allocation problem. Section 5
details the proposed MIPs formulation while Section 6 dis-
cusses the proposed heuristic based on relaxing constraints.
Experimental results are presented in Section 7, while final
considerations and future works are listed in Section 8.

2. SDN-based VI allocation
A cloud management framework relies on allocation al-

gorithms to efficiently identify physical resources for hosting
VIs. Usually, there are constraints that need to be satisfied
during the allocation process in order to guarantee the phys-
ical infrastructure capability to provide the requested virtual
resources [10]. Indeed, the problem of cloud data center
resources allocation to host VIs is a hard one due to its
computational expensiveness and complexity, and the need
of taking into account a wide range of constraints originated
from different tenants and providers. On IaaS providers, the
number of servers employed for composing a data center
appears as a challenging aspect [19], even performing a
prune on physical candidates by restricting the search to a
given data center, region, or zone. Moreover, VI allocation
problem is exacerbated by the multi-criteria constraints that
must be satisfied. A VM may require a specific configuration
of virtual CPUs, memory, and storage while virtual switches
(or even routers) have another set of configuration (e.g.,
flow table size, memory, and processing power). As a VI
can be seen as an extension of IaaS paradigm (including
network resources) the allocation problem can be examined
as a virtual network embedding formulation with additional
nodes constraints [20] [10].

The VI allocation is abstracted as a graph embedding
problem: vertices represent compute and network equip-
ments, while edges denote links and paths. Each graph
element has a set of requirements or capacities associated
with. Virtual graphs carrying out tenant requirements must
be placed atop a physical graph, which is representing the
cloud data center infrastructure.

SDN is a promising technology for isolating VIs pro-
visioning. Indeed, a VI can be provisioned with a private
controller (or an interface for communication with physical
controllers) used for internal management (e.g., load balanc-
ing, virtual topology segmentation) [7]. Considering QoS
requirements, SDN introduces opportunities for latency and
bandwidth control by decoupling data and control planes.
Although innovative, this approach leads to latency increase
on virtual resources communication as the traversed path of
a flow is extended. When a flow is proactively configured
along the path, latency is increased by a single RTT to

controller. The worst case can be observed on frequent
changing scenarios: as flows are periodically removed from
switches’ flow-tables, controllers interference is eventually
required [7]. As this fact imposes a challenging on allocation
of latency-sensitive applications, we claim that an allocation
model must consider switches’ flows-table as a shared re-
source for allocating QoS-aware VIs.

3. Related work
The literature defines that virtual network provisioning

on IaaS cloud data centers need to be driven by VM im-
portance (e.g., instance type) or specifically defined (virtual
links). Based on this train of thought, policies can be locally
(per physical links, or congested paths) or globally applied
(considering the data center topology) [21], [22]. Popa et
al. [23] proposed a set of allocation policy that aims to
approximate network sharing proportionality and can only
be achieved in a controlled scenario, such as SDN, as it
requires coordination between network controller and virtual
resources. Policies are controlled by a parameter indicating
that a communication has the same configuration and impor-
tance through the data center network paths. This parameter
is used to compute sharing on physical paths which are host-
ing virtual links and it is aligned with our proposal: we use
a virtual link configuration between two VMs (bandwidth
and latency) as a specification of requirements.

Specifically considering the mechanisms for selecting
physical resources to host VMs and links, literature ex-
poses proposals on optimal formulations and approxima-
tion heuristics [10]. In general, each proposal lays down
a specific and restricted usage scenario, usually focusing
on data center metrics optimization, such as fragmentation,
cost, revenue, acceptance ratio, among others. Chowdhury
et al. [11] proposed the joint allocation of virtual processing
and communicating resources, as discussed here.

The SDN-aware VI allocation is an open challenge
for IaaS cloud providers. [7] identified the key challenges
related with SDN-based virtual resource provisioning, point-
ing out the importance of flow tables and controllers sharing
among hosted VIs. Moreover, they proposed a hypervisor for
instantiating virtual networks, with similar management ap-
proaches to those implemented by VMs hypervisors. In ad-
dition, [24] proposed a framework for SDN-assisted network
virtualization. We propose a QoS-aware allocation algorithm
taking into account the particularities and challenges that the
authors [24] have identified while filling out a provisioning
gap identified in both works [7] [24].

SDN controller placement was studied in [17]. Authors
identified that latency to controller is a key factor for fi-
nal applications performance. Complementary, [15] focused
on virtual controllers provisioning, highlighting that hosted
virtual networks can have distinct addressing schemes and
routing policies. Some mechanisms for allocating net-
work bandwidth considering SDN resources were proposed
in [14] [13]. Features individually identified by both works
should be combined when allocating resources to host VIs.
In this work, SDN-aware constraints are proposed in a MIP



formulation to achieve bandwidth and latency control. Also,
the optimal MIP proposed in Section 5 considers that virtual
switches can be reserved and individually managed by cloud
tenants. In this context, we concentrated on QoS-aware VI
allocation atop SDN-based cloud data centers, considering
the challenges and research opportunities indicated by the
literature. Moreover, we formulate the allocation problem as
a joint allocation of VMs, switches, and links, claiming that
performance of cloud-hosted applications can be impacted
by networking allocation policies.

4. Problem formulation
4.1. Cloud data center and VI requests

Both cloud data center and VI requests are represented
by weighted undirected graphs. The former is represented
by a graph Gs(Ns

h, N
s
n, C

s, Es), in which Ns
h is the set

of servers and Ns
n the set of switches and routers that

compose the physical topology. SDN controllers are de-
noted by Cs. Links interconnecting servers and network
resources are denoted by the set Es. Each resource (server,
switch or link) has a residual (available) capacity denoted
by R(.). Similarly, a VI request is denoted by a graph
Gv = (Nv

h , N
v
n , E

v, Dv), in which Nv
h is the set of VMs,

Nv
n the set of virtual switches, and Ev virtual links. A matrix

of maximum allowed latency between virtual endpoints is
given by Dv, in which dij represents the maximum latency
between virtual resources i and j. Virtual resources have a
capacity requirement represented by c. Table 1 resumes the
notation used along this paper.

Notation Description

Gs(Ns
h, N

s
n, C

s, Es) cloud data center graph

Ns
h physical servers

Ns
n physical SDN-based switches and routers

Cs SDN controllers

Es physical links

R(.) residual capacity of physical resources

Gv = (Nv
h , N

v
n, E

v, Dv) VI request

Nv
h VMs

Nv
n virtual SDN-based switches

Ev virtual links

Dv matrix of maximum allowed latencies

dij allowed latency between virtual resources i and j

ci capacity requirements of virtual resources i

Ω(i) physical candidates for hosting i

P s(i, j) set of paths between Ω(i) and Ω(j)

TABLE 1. NOTATION USED ALONG THIS PAPER. i AND j REPRESENT
VIRTUAL RESOURCES WHILE u AND v ARE USED FOR PHYSICAL ONES.

As networking is a key aspect for hosted applications
performance, cloud providers are moving towards VMs pro-
visioning with QoS network requirements. In this context,
VI requests can be designed based on IaaS and Network-
as-a-Service (NaaS) scenarios as depicted on Figure 1.

Figure 1. E.g., VI requests allocation atop an SDN-based cloud provider.

• IaaS-only requests represent the traditional cloud
requests for VMs without specifying the interme-
diate hops and configuration of virtual networks.
However, we argue that in short time a tenant may
be able to request a maximum latency between two
VMs as well as a minimum end-to-end bandwidth
for another pair, instead of just specifying the data
center, region or zone locations. This request is
exemplified by the VI 2 (Fig. 1), in which two
VMs must be provisioned with network QoS. It is
worthwhile to note that the networking configuration
used to provide the connectivity is a private cloud
provider information. Indeed, the physical path (in-
cluding switches) enabling VMs communication is
abstracted from tenants.

• Combined IaaS / NaaS requests enable a full descrip-
tion of VMs and interconnecting virtual network
topology. In this request, a tenant can detail all
intermediate virtual switches and the required QoS
configuration among them. As exemplified by VI
1 request (Fig. 1), a cloud provider can use more
physical resources for hosting a virtual one: the VI
requested just one switch, while the cloud provider
employed three switches for composing the VI. In
this scenario, only the required switch is exposed to
tenant with SDN management capabilities [7].

A cloud provider can explore SDN technology to enforce
the QoS requirements for both request sets.

4.2. Allocating physical resources to host VIs
VI requests are individually processed by a cloud or-

chestration framework which has to determine whether to
accept or not the request. Although any VI component may
change during its lifespan using the elastic provisioning
of virtual resources, its reconfiguration is not discussed in
the present work as it is not directly represented in an
online formulation. We argue that initial provisioning and
elastic reconfiguration must be independently analyzed and
deployed. The allocated resources are released once the
tenant terminates the VI.

The allocation of VI requests onto a cloud data cen-
ter can be decomposed into nodes and links assign-
ments [25] [11]. A map of VMs onto physical servers is
given by Mh : Nv

h 7→ Ns
h, while for virtual switches on

SDN-based equipments is denoted as Mn : Nv
n 7→ Ns

n,
with Mh(i) ∈ Ns

h and Mn(j) ∈ Ns
n. Similarly, the map of



a virtual link ij is realized onto a physical path p ∈ P s

between the physical resources that host the end virtual
nodes of ij. In other words, Me : Ev 7→ P s, ∀ij ∈ Ev and
Me(ij) ⊆ P s(Mh(i)∪Mn(i),Mh(j)∪Mn(j)). For hosting
a virtual resource, the physical node must have a residual
capacity greater or equal than the virtual requested. Resid-
ual capacity represents the remaining available resources
on physical equipments (e.g., servers, switches, links, and
paths) not compromised on hosting virtual entities. For
VMs and switches, ci ≤ R(Mh(i)) and cj ≤ R(Mn(j)),
respectively. Similarly, for virtual links cij ≤ R(Me(ij)).

4.3. Cloud provider objectives
Our main interest in this paper is to allocate VI de-

livering the QoS requirements. In addition, we want to
decrease the allocation cost while simultaneously increase
the provider revenue. We define the cost for hosting a VI
proportionally to physical capacity reserved to Service Level
Agreement (SLA) assurance as given by Eq. (1), in which
|ij| represents the length of path hosting ij in terms of
hops [12] [11]. Complementary, the revenue for hosting a
VI is given by Eq. (2).

C(Gv) =
∑
i∈Nv

h

ci +
∑
j∈Nv

n

cj +
∑
ij∈Ev

cij |ij| (1)

R(Gv) =
∑
i∈Nv

h

ci +
∑
j∈Nv

n

cj +
∑
ij∈Ev

cij (2)

VI provisioning quality is quantified by the mean latency
between communicating virtual resources, as denoted by
Eq. (3), where L(i, j) denotes the mean latency of physical
path hosting the virtual link ij, and |Ev| indicates the
number of virtual links.

Q(Gv) =

∑
ij∈Ev L(i, j)

|Ev|
(3)

5. Optimal MIP for QoS-aware VI allocation
5.1. Selecting candidates to host virtual resources

On public IaaS providers, tenants select the region/zones
for VMs instantiation1. It is plausible to state that this type
of option is an approximation for VM placement based on
geographical location [26]. Physical candidates for hosting
a virtual resource i are represented by the set Ω(i). Each
virtual resource has a geographical location requirement
(zone or region) denoted by loc(i). Any physical resource
placed on location loc(i) is a candidate for hosting i.

We claim that besides zones and regions, users must be
able to specify real network requirements (bandwidth and
latency). For communication-intensive applications, latency
is a critical factor [27]. Motivated by the use of network
virtualization techniques on IaaS data centers, latency and

1. Amazon EC2 (https://aws.amazon.com/ec2/pricing/on-demand/) and
Google Compute Engine (https://cloud.google.com/compute/pricing) have
different prices based on zones/regions.

network performance are not completely dependent on phys-
ical location [19]. In this regard, instead of performing
the candidates selection only based on a fixed location as
traditionally used on allocation mechanisms [28] [11], we
introduce a selection based on end-to-end latency.
Candidates for hosting virtual switches with latency
requirements. When the VI request includes latency re-
quirements for links from/to virtual switches, the subset
of physical candidates for hosting a switch i is composed
of equipments having output links capable of hosting the
worst case latency requirement of i. In other words Ω(i) =
{u ∈ Ns

n|max(lat(u, v)) < max(dij)};∀v ∈ adj(u);∀j ∈
adj(i), in which adj(.) informs all adjacent resources, and
lat(u, v) indicates the latency on physical path u to v.
Candidates for hosting virtual switches without latency
requirements. In this case, physical switches with enough
residual capacity are candidates for hosting a virtual switch
i: Ω(i) = {u ∈ Ns

n|R(u) ≥ ci}.
Candidates for hosting VMs without latency require-
ments. Physical resources with enough residual capacity are
candidates for hosting a VM i. In other words, Ω(i) = {u ∈
Ns
h|R(u) ≥ ci}.

Candidates for hosting VMs with latency requirements.
(a) VMs connected to virtual switches: for this subset,
physical candidates are selected based on their latency to
virtual switches communicating with VM i. Hence, Ω(i) is
composed of {u ∈ Ns

h|lat(u, v) ≤ dij};∀v ∈ Ω(j); j ∈
adj(i) \Nv

h .
(b) VMs connected to VMs: in this case, candidates are
selected based on end-to-end latency requirement. Thus,
Ω(i) = {u ∈ Ns

h|lat(u, v) ≤ dij}∀v ∈ Ns
h.

Following [11], in order to perform a joint allocation
of edges and vertices, each virtual resource i is assigned
to the physical graph, and interconnected with their candi-
dates through a temporary link with infinity capacity and
no communication latency. The resulting augmented graph
is denoted by Gs

′
(Ns′ , Cs, Es

′
). In this sense, Ns′ =

Ns
h ∪ Nv

h ∪ Ns
n ∪ Nv

n ; and Es
′

= Es ∪ {iu | i ∈ Nv
h , u ∈

Ω(i)} ∪ {ju | j ∈ Nv
n , u ∈ Ω(j)}. SDN controllers (Cs)

are not affected by the augmented graph. Fig. 2 exemplifies
an augmented graph by connecting VI 1 request (Fig. 1) to
physical resources by means of temporary links.

Figure 2. An augmented graph combining virtual and physical resources.

5.2. Variables and objective
A combination of three variables is used to represent

a possible map solution for virtual nodes, switches, and
links with QoS requirements. The variable fijuv accounts
the amount of ij flows allocated on physical link uv, while



the variable xuv belongs to a binary domain to indicate the
presence of a flow (a virtual link request) from u to v.
It is set to 1 if

∑
ij∈Ev (fijuv + fijvu) > 0, otherwise 0.

Representing switch flow-tables and the controllers usage,
eijpu is a binary variable to indicate the presence of ij flow
on SDN controller (set to 1), or pointing that flow-entry to
the path p is hosted on switch u (set to 0).

In order to achieve the main objective (Section 4.3) we
use a modified version of Equations (1), (2), and (3) to
compose the objective function (Eq. (4)). By minimizing the
objective function, we envisage to decrease the substrate cost
for hosting VIs, mainly for virtual links allocation and flow-
tables reservation. As previously proposed by literature,
by dividing the cost with the residual capacity of nodes,
switches and links, physical resources with more residual
capacity are preferred facing less residual capacity ones [11].
Parameters αuv, βu, and γe control the importance of a
resource representing the cloud provider view about data
center usage, ranging between 1 and R(.), while δ is a
positive number (avoid division by zero).

min :
∑

u∈Ns
h∪Ns

n

βu
R(u) + δ

∑
i∈Nv

h∪Nv
n

xiuci +

∑
u∈Ns

n

γe
R(u) + δ

∑
ij∈Ev

∑
p∈P s(i,j)

(1− eijpu) +

∑
uv∈Es

αuv
R(uv) + δ

∑
ij∈Ev

fijuv (4)

5.3. Constraints
For guaranteeing the QoS established on SLA, a set of

capacity, flow-related, meta and binary constraints must be
satisfied by the allocation mechanism.
Servers and links capacity constraints. Eq. (5) defines
capacity constraints for physical links while Eq. (6) applies
to physical servers. In short, physical resources must have
enough capacity for hosting the requests.∑
ij∈Ev

(fijuv + fijvu) ≤ R(uv)xuv ∀u, v ∈ Ns′ (5)

R(u) ≥
∑
i∈Nv

h

xiuci ∀u ∈ Ns
h (6)

SDN-related constraints. SDN-based switches have a
specificity on forwarding table capacity: even when a flow
is passing through the switch (identified by variable x), the
corresponding flow-table entry maybe only present on SDN
controllers (identified by variable e). In this sense, Eq. (7)
indicates that the residual capacity of a switch u must be
larger enough to host all flow-table entries, however, those
entries hosted by a controller are not considered. sij and tij
represent the source and target nodes of a virtual link ij.

R(u) ≥
∑
k∈Nv

n

∑
ij∈Ev :sij=k∨tij=k

∑
p∈P s(i,j)

(xku − eijpu)ck

+
∑
ij∈Ev

∑
p∈P s(i,j)

(xiu − eijpu) ∀u ∈ Ns
n (7)

Flow-related constraints. Each virtual link request rep-
resents a flow that must be allocated and forwarded atop
a physical infrastructure. Eq. (8) guarantees that for each
virtual link ij, all flows starting from sij must be equals
as the requested virtual link capacity, while Eq. (9) has the
same meaning for a flow arriving at tij . Complementary,
Eq. (10) is responsible for the flow forwarding on an SDN
topology. Each intermediate physical resource must forward
exactly all flows received to the target resource.∑

u∈Ns′

fijsiju −
∑
u∈Ns′

fijusij = cij ∀ij ∈ Ev (8)

∑
u∈Ns′

fijtiju −
∑
u∈Ns′

fijutij = −cij ∀ij ∈ Ev (9)

∑
v∈Ns′

fijuv −
∑
v∈Ns′

fijvu = 0

∀ij ∈ Ev,∀u ∈ Ns′ \ {sij , tij} (10)
Latency constraints. A tenant may compose an SLA in-
forming latency requirements. Thus, for delivering the QoS,
a provider must host virtual links atop physical paths re-
specting the requested configuration (dij , for a virtual link
ij). Eq. (11) and (12) guarantee that the latency of a physical
path hosting a virtual link is lower than the requested value
even when the flow-table entry is placed at the controller.

dij ≤
∑
u,v∈p

(lat(u, v)xuv + lat(u, c)eijpu)

∀ij ∈ Ev;∀p ∈ P s(i, j) (11)

dij ≥
∑
u,v∈p

lat(u, v)xuv ∀ij ∈ Ev;∀p ∈ P s(i, j) (12)

Meta and binary constraints. Eq. (13) ensures that a virtual
resource is allocated by a single physical resource, while
Eq. (14) ensures that x is set when there is any flow passing
through. Eq. (15) to (17) indicate the variable domains.∑

u∈Ω(i)

xiu = 1 ∀i ∈ Nv
h ∪Nv

n (13)

xuv = xvu ∀u, v ∈ Ns′ (14)
fijuv ≥ 0 ∀u, v ∈ Ns′ ;∀ij ∈ Ev (15)

xuv ∈ {0, 1} ∀u, v ∈ Ns′ (16)
eijpu ∈ {0, 1} ∀u ∈ Ns

n;∀ij ∈ Ev;∀p ∈ P s(i, j) (17)

6. QVIA-SDN mechanism
Solving a MIP is known to be computationally in-

tractable [29] [11]. Consequently the proposed optimal MIP
for QoS-aware VI allocation is practically infeasible. Coping
with, a set of techniques are applied for relaxing the integer
constraints obtaining an Linear Program (LP), and to prune
the number of physical candidates and paths, decreasing
the search space. After solving the LP, the approximated
solution is treated by a rounding heuristic. The LP, pruning
and rounding techniques compose QVIA-SDN (QoS-Aware
VI Allocation on SDN-based data centers).



6.1. Relaxing variables
For obtaining an LP, constraints (16) and (17) are

relaxed originating Eq. (18) and (19), respectively, with
domains between 0 and 1. The objective function and all
other constraints remain unchanged.

1 ≥ xuv ≥ 0 ∀u, v ∈ Ns′ (18)
1 ≥ eijpu ≥ 0 ∀u ∈ Ns

n;∀ij ∈ Ev;∀p ∈ P s(i, j) (19)

6.2. Pruning physical candidates
Cloud data centers are usually composed of a set of

homogeneous resources interconnected by structured net-
work topologies [27]. Independently of the topology, phys-
ical servers may be grouped by some similar aspects (e.g.,
bandwidth, latency and processing power). This information
can be used to compose groups of candidates [2]. Following
this line, QVIA-SDN decreases the number of physical
candidates by enforcing a maximum percentage for each
data center region. This information can be adjusted by
providers according to the number of available resources
per region and zone. One may expect that by limiting the
number of candidates, the efficiency of the algorithm should
be impacted by the constrained solution space. The impact
of this parameterization is discussed in Section 7.

6.3. Decreasing the number of physical paths
Accounting and controlling all paths between physical

resources composing a data center is computationally expen-
sive and practically infeasible for online VI allocation. As
the resulting LP requires the set P s to find an approximated
solution, QVIA-SDN employs a networking path pruning for
decreasing the number of candidates. Data centers topol-
ogy are commonly composed of multiple paths between
servers for load balancing, fault-tolerance, and reliability
purposes [27], [18]. QVIA-SDN explores this fact account-
ing just a subset of paths between all physical resources
for composing P s. This temporary pruning only hides the
existence of some paths between physical resources. Any
reliability algorithm or backup-traffic engineering can be
latter applied. In other words, P s is initially composed of (i)
one shortest path and (ii) one small latency path between
all pairs of physical candidates (servers and switches), in
which (i) is different from (ii).

6.4. Rounding heuristic
When performing the LP relaxation process, the values

obtained for variables x and e are no longer binary and the
correlation between f , x and e is lost. Therefore, QVIA-
SDN employs a heuristic to evaluate the obtained values
and to approximate a possible solution. The heuristic is
composed of two steps, as given by Algorithms 1 and 2.

The first step (Alg. 1) is based on D-ViNE [11]: initially,
an augmented graph connecting the virtual resources to
their candidates is created, following the definitions from
Section 5.1, and then the LP with relaxed variables is solved
(lines 1 and 2). The next step identifies a suitable hosting
candidate for each virtual resource. In this sense, the pz

Input: Gv, Gs

Output: Mn,Mh,Me

1 Create augmented graph Gs′

2 Solve QVIA-SDN with relaxed variables
3 for k ∈ Nv

h ∪N
v
n do

4 for z ∈ Ω(k) do
5 pz = α(

∑
ij∈Ev fijkz + fijzk) + (1− α)xkz

6 end
7 Let zmax = max{pz|z ∈ Ω(k)}
8 if zmax = ∅ then
9 Reject Gv

10 end
11 if k ∈ Nv

h then
12 Set Mh(k)← zmax

13 else
14 Set Mn(k)← zmax

15 end
16 end
17 if DPS(Gv, Gs′ ,Mn,Mh,Me) then
18 Update residual capacities of physical resources
19 Return Mn,Mh,Me

20 else
21 Reject Gv

22 end
Algorithm 1: Pseudocode for QVIA-SDN, adapted
from [11].

is calculated for all physical candidates to host a virtual
resource k (lines 3 to 16), defined as a weighted product of
xkz and the total flow passing through kz in both directions.
In other words, pz = α(

∑
ij∈Ev fijkz+fijzk)+(1−α)xkz .

The rationale behind this approach is to reconstruct the
correlation between f and x jointly identifying the mapping
of vertices and edges. The weight α is used to guide the
heuristic preference (network or servers) when combining
both information. The candidate with the highest pz is
selected to allocate the virtual element. When no candidates
are identified, VI allocation is rejected (lines 8 to 9).

After identifying a suitable mapping for virtual machines
and switches, the appropriate paths for hosting all virtual
links are accounted by QVIA-SDN considering the SDN
particularities (controllers, switches and flow tables). The
Deterministic Path Search (DPS) is described in Algo-
rithm 2. DPS is based on e values, latency and bandwidth
requirements for identifying whether a physical path can
host a virtual link ij, aiming to decrease the use of switches
by mapping flow entries at controller, when possible.

In this sense, when two communicating virtual resources
are mapped on a single physical host, it is assumed that
the host has enough capacity for providing bandwidth and
latency requirements (lines 2 to 4). A discussion on internal
virtualization hypervisor allocation is let as future work. All
possible hosting paths for a virtual link ij (line 5) are ana-
lyzed considering the presence or absence of correspondent
flow-table entries (lines 8 to 14). If there is any value in e,
QVIA-SDN accounts the latency to the controller instead of
allocating a flow-table entry at the corresponding switch.

Physical paths with latency higher than the requested
configuration dij , even with flow-table entries allocated in
all switches along the path, are discarded. A similar rationale
is applied to bandwidth requirements ignoring paths without
the minimum requirements. However, in some cases a path
can be reconfigured to accommodate the requested latency



Input: Gv, Gs′ ,Mn,Mh,Me

Output: True or false and paths for Me

1 for ij ∈ Ev do
2 if Mn(i) == Mn(j) ∨Mh(i) == Mh(j) then
3 continue
4 end
5 for p ∈ P s(i, j) do
6 path← {}
7 lat path← 0
8 for u ∈ p do
9 if eijpu > 0 then

10 lat path← lat path+ lat(u, c)
path← path+ u+ controller(u)

11 else
12 path← path+ u
13 end
14 end
15 if R(path) ≥ cij ∧ lat path ≤ dij then
16 Set Me(ij)← path
17 break
18 else
19 path = solveKnapsack(path, dij)
20 if path then
21 Set Me(ij)← path
22 break
23 else
24 Reject Gv

25 end
26 end
27 end
28 end

Algorithm 2: Pseudocode for Deterministic Path Search.

configuration. In this case, QVIA-SDN verifies whether
there is one combination that can allocate the virtual link
with the minimum number of physical switches and hops
and still respect the latency request by solving a knapsack
problem involving the resources along the path. Among
all paths, we select those with minimum number of hops
(length of a path) and maximum number of flow-table
entries hosted by the controller (decreasing the switches
load). It is worthwhile to mention that such process still
respect the bandwidth requirements. Finally, in the absence
of a physical path for hosting a virtual link, VI is rejected.

7. Evaluation
The evaluation quantifies the data center usage

(provider’s perspective) as well as the QoS delivered to
tenants. Initially, the metrics and the simulation scenarios are
detailed, and latter the results comparing QVIA-SDN with
two baseline mechanisms are discussed.

7.1. Metrics
For representing the cloud provider objectives (Sec-

tion 4.3), five metrics were selected. (i) Revenue-to-cost
ratio gives an insight of how much a provider will gain by
accepting a VI request. (ii) Cloud data center fragmentation
indicates the percentage of active resources that are hosting
VIs, figured out by dividing the number of active resources
by the total number of available resources. (iii) The mean
runtime to allocate a VI request. (iv) Acceptance ratio quan-
tifies the percentage of successfully allocated VIs. (v) The
mean latency of a provisioned VI, quantified by summing
up the latency of physical paths hosting virtual links and
latter dividing by the number of requested virtual links.

7.2. Simulation scenarios
QVIA-SDN and a discrete event simulator were imple-

mented in Java v1.8, using CPLEX optimizer (v12.6.1.0)
for solving the LP2. Experiments were performed on Intel
Xeon E5-2620 2.0GHz - 24 cores, 196GB (DDR3) RAM.
For analyzing QVIA-SDN applicability on cloud scenarios,
the fat-tree topology was selected to represent the cloud
data center [18], while two VI topologies commonly used
in public and private providers were composed: multi-tiered
and virtual private clouds.

Fat-tree topology. A fat-tree is composed of k pods,
each containing two layers of k/2 switches. In short, a
fat-tree build with k-port switches supports up to k3/4
servers. In this paper, two configurations are considered,
with k = 4 and k = 8. For representing the physical capacity
of servers, switches and links, absolute values were defined:
100 for core, aggregation and edge switches representing the
flow-table size; and 1000 for servers (denoting processing,
memory or storage). The bandwidth capacity between core
switches and pods is defined as 10 Gbps, and as 1 Gbps
for links inside the pod. The latency between any pair of
physical resources is defined as 1 ms, while the latency
between core switches and SDN controller is 2 ms. Core
switches are directly connected with the SDN controller,
while other switches are connected by logical paths. The
hierarchical organization of regions and zones into a fat-tree
is defined as follow: each zone is represented by a pod, while
a pair of zones composes a region. The predefined values
are useful for simulation purposes and can be replaced by
real values according to the cloud data center.

Multitiered VI requests. A large fraction of cloud ten-
ants organizes the VMs following a n-layers topology [30],
comprising a load balancer in charge of distributing requests
for a set of web servers, that eventually query a database.
For the simulation purpose, each layer was defined with a
dedicated virtual switch for requesting network QoS param-
eters. The number of VMs for web servers and databases
is uniformly distributed between 10 and 20, while commu-
nication between virtual resources is represented by virtual
link requests.

Virtual Private Clouds (VPC). Amazon EC2 intro-
duced the dynamic provision of Virtual Private Clouds
(VPCs)3 composed of a subset of access point rules and
a set of VMs attached to it, composing a private Local
Area Network (LAN) that is managed by the tenant. For
composing VPC requests, a set of VMs is connected to an
SDN-based virtual switch. The number of VMs follows an
uniform distribution between 5 and 10 elements.

For both VI topologies, the virtual capacity is defined
as a fraction of total physical capacity: each virtual switch,
VM or virtual link consumes 5-15% of a physical resource
(following an uniform distribution). As cloud data centers
are organized in regions and zones, the geographical location
of VIs is defined by an initial random selection of region,

2. IBM CPLEX Optimizer: https://www.ibm.com/software/commerce/
optimization/cplex-optimizer/.

3. Virtual Private Cloud (VPC): https://aws.amazon.com/vpc/.



followed by a specification of a zone (randomly performed).
In short, all VIs define a region, with 50% chance to get a
zone. A set of 50 requests (VPC or multi-tiered) is submitted
for each physical scenario. VI arriving times are uniformly
distributed up to 100 discrete intervals (a VI remains active
for at most 30 intervals).

7.3. Simulation results

The results show sample means with 95% confidence
intervals. QVIA-SDN is compared with two baseline algo-
rithms. First, a formulation without SDN knowledge and
latency control, labeled as NSDN, represents a common
approach on literature [11]. In order to isolate the QVIA-
SDN latency-control overhead, a version without latency
optimization constraints is presented and identified by NLC
label. Each scenario is executed with a limited number
of physical candidates identified by the percentage (60,
80 and 100%) to investigate the candidates pruning dis-
cussed in Section 6.2. Based on empirical observations,
QVIA-SDN parametrization is α = 0.9 (Section 6.4) and
βu = γe = αuv = 1 (Section 5.2).

7.3.1. Acceptance ratio. The acceptance ratio for k = 4
and k = 8 scenarios is presented in Figures 3(a) and 3(b),
respectively. Due to limited number of available physical
resources on k = 4 configuration, Fig. 3(a) indicates a
small variation on results, independently of the number of
physical candidates (60, 80 or 100%). A different perspec-
tive is highlighted by Fig. 3(b): as QVIA-SDN tends to
distribute groups of virtual resources atop the substrate (for
decreasing the internal average latency), the mechanism can
increase the acceptance ratio when more physical resources
are considered.
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Figure 3. VI acceptance ratio.

7.3.2. Average latency. Fig. 4 shows the cumulative dis-
tribution of normalized mean latency. The average latency
experienced by tenants provisioned with QVIA-SDN allo-
cations is smaller than the latency experienced by alloca-
tions performed by the algorithm without latency control
(NLC), but in some cases higher than latency in the envi-
ronment without SDN. This fact is justified by the number
of accepted VIs: as NSDN allocates a smaller number
of requests, all flow-table entries are placed on switches.
QVIA-SDN uses the SDN controller to allocate flow-table
entries and still respect the latency requirements, justifying
the introduction of such latency-aware mechanism. Com-
plementary, Fig. 5 indicates that QVIA-SDN presents small
variability on latency compared to NLC.
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Figure 4. Cumulative distribution of normalized mean latency.
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Figure 5. Mean latency variability.

7.3.3. Fragmentation. Figures 6(a) and 6(b) present the
fragmentation for k = 4 and k = 8, respectively. QVIA-
SDN tends to condense virtual resources atop the data cen-
ter. For both scenarios, QVIA-SDN obtained a fragmented
switch configuration, due to the high use of switches to
guarantee latency requirements. It is worthwhile to highlight
that even with a higher acceptance ratio, both SDN-aware
versions (NLC and QVIA-SDN) have competitive or better
results for data center fragmentation metric.

7.3.4. Revenue-to-cost ratio. Figures 7(a) and 7(b) indicate
that all three versions have equivalent values. However, it is
important to highlight that even allocating more VI requests,
the decreased fragmentation induced by QVIA-SDN keeps
a revenue-to-cost ratio with low and competitive values.
Moreover, QVIA-SDN allocates flow-table entries on SDN
controllers decreasing the switches usage.
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Figure 6. Data center fragmentation.
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Figure 7. Revenue-to-cost ratio.

7.3.5. Mean runtime to allocate VI requests. Figures 8(a)
and 8(b) shown the mean runtime to allocate VIs. As ex-
pected, the introduction of SDN requirements increased the
number of constraints on LP, and consequently the runtime.
Despite this fact, the average runtime is in order of few
seconds for most cases.

7.4. Key observations
An SDN-aware allocation mechanism can increase the

acceptance ratio without decreasing the QoS. As indicated
by Figures 3 and 5, even allocating more VI requests, QVIA-
SDN still composes VIs with lower internal latency values.

QoS requirements can be provisioned without decreasing
the revenue-to-cost ratio. The cloud providers’ objectives
(discussed in Section 4.3) represented by Figures 4 and 7 can
be achieved without overloading the data center as indicated
by the fragmentation metric (Figure 6).

Due to NP-hard complexity, runtime is an open chal-
lenge. Although QVIA-SDN indicates that QoS-aware pro-
visioning is possible even considering latency requirements
on SDN-based data center, the NP-hard complexity remains
a barrier. The experimental analysis indicates that due to
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Figure 8. Mean runtime to allocate VI requests.

cloud data center homogeneity, a suitable solution can be
found without analyzing all servers, switches, and paths.

8. Conclusion

SDN has being applied by public and private cloud
providers for internal IaaS management and service pro-
visioning. Despite all benefits introduced by SDN decou-
pled management of data and control planes, the paradigm
brought a set of challenges related to virtual infrastructures
provisioning. Specifically considering the allocation of phys-
ical resources for hosting VIs, SDN introduced new con-
straints on physical switches and network topology, such as
size-limited flow-tables, increased latency to the controller
when a flow-table miss is triggered, and long hosting paths.

In this context, the present work formulate the online VI
allocation on SDN-based cloud data centers as an optimal
MIP considering all traditional aspects and SDN challenges.
Additionally, a mechanism was proposed to relax the MIP
constraints obtaining a linear program as well as a rounding
heuristic. The proposed mechanism, QVIA-SDN, was com-
pared with two baseline approaches, and the results highlight
that for allocating QoS-aware VIs atop SDN-based cloud
data centers, the traditional allocation mechanisms, without
considering latency requirements and SDN configuration,
result in VIs provisioned with higher internal latency. More-
over, in cloud data centers with homogeneous resources,
the number of physical candidates accounted for finding a
solution can be pruned without compromising the provider
and tenants perspectives. The promising results obtained
by modelling SDN resources and constraints indicate some
future directions. Initially, the logically centralized knowl-
edge of an SDN controller can be used to share residual
bandwidth among cloud tenants [23], while a second line
indicates an actual and practical implementation on private
cloud frameworks.
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