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Abstract. With the convergence of computing and communication, and
the expansion of cloud computing, new models and tools are needed
to allow users to define, create, and exploit on-demand virtual infras-
tructures within wide area distributed environments. Optimally design-
ing customized virtual execution-infrastructure and executing them on a
physical substrate remains a complex problem. This paper presents the
VXDL language, a language for specifying and describing virtual infras-
tructures and the HIPerNET framework to manage them. Based on the
example of a specific biomedical application and workflow engine, this
paper illustrates how VXDL enables to specify different customized vir-
tual infrastructures and the HIPerNET framework to execute them on
a distributed substrate. The paper presents experiments of the deploy-
ment and execution of this application on different virtual infrastructures
managed by our HIPerNet system. All the experiments are performed on
the Grid’5000 testbed substrate.

Key words: Virtual Infrastructure as a service, resource virtualization, applica-
tion mapping, graph embedding problem, workflow language, topology language

1 Introduction

The convergence of communication and computation portrays a new vision of the
Internet. It is becoming a worldwide cloud increasingly embedding the compu-
tational and storage resources that are able to meet the requirements of emerg-
ing applications. This resulting vision of a global facility, that brings together
distributed resources to build large-scale computing environments, recalls and
extends the promising vision of Grid computing, enabling both data-intensive
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and computing-intensive applications. In this context, the concept of virtual-
ization is a powerful abstraction. It enables an efficient separation between the
service and application layers on one hand and the physical resources layer on
the other hand. The OS-level virtual machines paradigm is becoming a key fea-
ture of servers, distributed systems, and grids. It simplifies the management of
resources and offers a greater flexibility in resource usage. Each Virtual Ma-
chine (VM) a) provides a confined environment where non-trusted applications
can be run, b) allows establishing limits in hardware-resource access and us-
age, through isolation techniques, c) allows adapting the runtime environment
to the application instead of porting the application to the runtime environment
(this enhances application portability), d) allows using dedicated or optimized
OS mechanisms (scheduler, virtual-memory management, network protocol) for
each application, e) enables applications and processes running within a VM to
be managed as a whole. Extending these properties to network resources (links
and equipments) through the concept of ”virtual infrastructure”, the abstrac-
tion of the hardware enables the creation of multiple, isolated, and protected
organized aggregates on the same set of physical resources by sharing them in
time and space. The virtual infrastructures are logically isolated by virtualiza-
tion. The isolation also provides a high security level for each infrastructure.
Moreover, virtualizing routers and switching equipments enables the customiza-
tion of packet routing, packet scheduling, and traffic engineering for each virtual
network crossing it.

However, programming applications on large-scale distributed environments
is difficult. Defining the optimal infrastructure to execute them is another issue.
The flexibility offered by virtual infrastructures could make the problem even
more complex. Promising work on workflow has been done in the area of ap-
plication development to optimize their usage of distributed environments. This
paper proposes to explore how this work can also benefit to the composition of
virtual infrastructures.

The rest of the paper is structured as follows. In section 2, we define our
model of customized Virtual Private eXecution Infrastructures named VPXI.
To specify these VPXIs we define a description language for VPXI specification
and modeling, Virtual eXecution Description Language, VXDL. Section 3 details
the process for mapping an application on physical resources in a virtualized-
infrastructure context. In section 4 we illustrate the application mapping through
an example with the Bronze Standard workflow. In section 5, we develop our
combined network and system virtualization approach embedded in the HIPer-
Net software and report the experiments on a real-scale testbed using the medical
image analysis application. Section 6 discusses related works. Finally, conclusions
and perspectives are developed in section 7.
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2 The Virtual Private eXecution Infrastructure concept

2.1 The VPXI concept

We define the Virtual Private eXecution Infrastructure (VPXI) concept as a
time-limited interconnection of virtual computing resources through a virtual
private overlay network. Ideally, any user of a VPXI has the illusion that he is
using his own distributed system, while in reality he is using multiple systems,
part of the global system. The resulting virtual instances are kept isolated from
each others. The members of a VPXI have a consistent view of a single private
TCP/IP overlay, independently from the underlying physical topology. A VPXI
can span multiple networks belonging to disparate administrative domains. Users
can join from any location, deploying and using the same TCP/IP applications
they were using on the Internet or their intranet.

A VPXI can be formally represented as a graph in which a vertex is in charge
of active data-processing functions and an edge is in charge of moving the data
between vertices. A VPXI has a life time and can be requested online or reserved
in advance. It is described and submitted as a request by a user. Then, if accepted
by the operating framework, it exists as a descriptor and has an entry in a VPXI
table until its release time. During the activation phase, the VPXI runs in the
data plane and is represented in the control plane of each allocated equipment.

2.2 VXDL: VPXI Description Language

A VPXI specification comprises the recursive description of: a) individual end
resources or resource aggregates (clusters) involved, b) performance attributes
for each resource element (capacity), c) security attributes, d) commercial at-
tributes, e) temporal attributes, f) elementary functions, which can be attributed
to a single resource or a cluster (e.g. request of computing nodes, storage nodes,
visualization nodes, or routing nodes), g) specific services to be provided by
the resource (software), h) the virtual-network’s topology, including the perfor-
mance characteristics (typically bandwidth and latency), as well as the security,
commercial, and temporal attributes of the virtual channels. Figure 1 illustrates
this concept, representing a virtual infrastructure composed by the aggregation
of virtual machines interconnected via virtual channels. It shows two virtual
routers (vertices rvA and rvB) which are used to interconnect and perform the
bandwidth control among the other virtual resources (vertices rv 1 to 8). The
virtual routers can independently forward the traffic of the different virtual in-
frastructures which share the same physical network. Each edge represents a
virtual link (as lv1 and lv2) with different configurations, used to interconnect a
pair of virtual resources.

To enable the specifications and the manipulation of these VPXI entities
we propose the VXDL (Virtual Infrastructure Description Language) [9]. It al-
lows the description not only of the end resources, but also of the virtual net-
work’s topology, including virtual routers and timeline representation. Imple-
mented with the XML standard, VXDL helps users and applications to create
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Fig. 1. Example of a VPXI composition using graph representation.

or change VPXI specifications 1. The VXDL grammar is divided in Virtual Re-
sources description, Virtual Network Topology description, and Virtual Timeline
description. A key aspect of this language is that these descriptions are partially
optional: it is possible to specify a simple communication infrastructure (a vir-
tual private overlay network) or a simple aggregate of end ressources without
any network topology description (a virtual cluster or grid). Below, we detail
the key aspects of this language.

Virtual Resources Description: This part of VXDL grammar enables
users and applications to describe, in a simple and abstract way, all the required
end hosts and host groups. VXDL allows the basic resource parametrization
(e.g. minimum and maximum acceptable values for RAM memory and CPU
frequency). An important feature of VXDL is that it proposes cross-layer pa-
rameters. With the specification of anchor and the number of virtual machines
allocated per physical host users can directly interact with lower layers and trans-
mit application-specific information. The anchor parameters corresponds to a
physical allocation constraint of a VPXI. Indeed, in theory a VPXI can be al-
located anywhere in a virtualized substrate, but sometimes it is desirable that
a virtual end host (or group) be positioned in a given physical location (e.g. a
site or a machine - URL, IP) for an application-specific reason. On the other
hand, in a virtualized substrate, multiple virtual machines can be allocated in
the same physical host, sharing the real resources. VXDL enables the definition
of a maximum number of virtual machines that must be allocated in a physical
host, enabling users to interact directly with the allocation algorithm.

Virtual Network Topology Description: VXDL brings two original as-
pects within the network’s topology description: I) the joined specification of
network elements and computing elements and II) the link-organization con-
cept, which permits a simple and abstract description of complex structures.
Links can define connections between end hosts, between end hosts and groups,

1 More information about VXDL is provided on http://www.ens-lyon.fr/LIP/RESO/

Software/vxdl

http://www.ens-lyon.fr/LIP/RESO/Software/vxdl
http://www.ens-lyon.fr/LIP/RESO/Software/vxdl
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inside groups, between groups and VXrouters, and between VXrouters. In VXDL
grammar, the definition of source - destination pairs for each link is proposed.
The same link definition can be applied to different pairs, simplifying the spec-
ification of complex infrastructures. For example, links used to interconnect all
components of an homogeneous group, as a cluster, can all be defined in a same
link description. Each link can be defined by attributes such as latency, band-
width, and direction. Latency and bandwidth can be defined by the maximum
and minimum values.

Virtual Timeline Description: Any VPXI can be permanent, semi-
permanent, or temporary. The VPXI are allocated for a defined lifetime in time
slots. Time-slot duration is specific to the substrate-management framework and
consequently this parameter is configured by the manager of the environment.
Often the VPXI components are not used simultaneously or all along the VPXI
lifetime. Thus, the specification of an internal timeline for each VPXI can help
optimizing the allocation, scheduling, and provisioning processes. Periods are
delimited by temporal marks. A period can start after the end of another period
or after an event.

2.3 VPXI embedding problem

Using the VXDL language, users can specify the desirable configuration and
network composition of a VPXI. A VPXI request must then be interpreted,
and the corresponding virtual resources have to be reserved and provisioned on
available physical resources. This virtual-infrastructure allocation corresponds
to a classical graph embedding problem, where the graph describing the virtual
infrastructure must be mapped the physical substrate graph.

Virtual and physical graphs are of the form G(V,E) where vertices V are a
set of resources interconnected by a set of links (edges represented by E). Each
resource or link can have a capacity represented by cv and cp for virtual and
physical components respectively. Capacities can be interpreted as configura-
tion of bandwidth or latency for links, and as memory size or CPU speed for
resources/nodes. The information about virtual resources allocation are repre-
sented in a map notation. Each virtual component allocated in a physical one is
represented as a line of map, containing the reserved capacity (cv) and the uti-
lization period (∆t). This time notation enables the representation of different
time periods in the same VPXI, where virtual resources and links can be used
in disjoined time windows, in accordance with the timeline description proposed
by VXDL.

This embedding problem is extremely challenging and has been proved to be
NP-hard. Embedding heuristics taking into account the substrate characteristics
to simplify the allocation have been proposed [12, 13]. These proposals aim at
maximizing the resources usage or at minimizing the maximum link load. To
complement these works, we examine the virtual infrastructure description and
embedding problem from the application perspective.
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3 Application-mapping principles

In our model, the application-mapping process is separated in three steps:
I) workflow generation: the workflow is generated using information extracted

from the application, such as benchmarks results, data input description, data
transfer in each module, and the number of nodes required to perform a satis-
factory execution.

II) workflow translation into VXDL: taking into account the application’s
requirements (RAM configuration, CPU speed, and storage size), users can de-
velop a VXDL description, asking for the desirable configuration of the VPXI.
At this point users can also declare that some components must be allocated in
a specific location as well as define the virtual network topology specifying the
proximity (latency configuration) of the components and the needed bandwidth.

III) VPXI allocation: in this step VPXI management framework will allo-
cate the virtual components respecting the configuration expressed by the user
(such as parametrizations and time periods organization). In a second phase, the
software configuration (OS, programming and communication tools), extracted
directly from the application and described using VXDL, will be deployed within
the virtual machines that compose the VPXI.

3.1 Workflow language

Complex applications able to exploit large scale distributed environments are
generally described with workflows. These workflows are interpreted by engines
that convert the description of work in execution scripts.

Several workflow languages have been proposed in the literature. On grid-
based infrastructures, Directed Acyclic Graph (DAG)-based languages such as
the MA-DAG language, part of the DIET middleware [3], have often been used.
They provide a explicit, static graph of all computing tasks to be performed.
To ease definition of grid applications with a complex logic to be represented,
more abstract language have been introduced. For instance, Scufl was introduced
within the myGrid project2 to present data flows enacted through the Taverna
workflow engine [10]. It is one of the first grid-oriented data flow languages that
focuses on the application data flow rather than on the generated graph of tasks.
The GWENDIA language3 considered in this paper is a data-flow oriented lan-
guage that aims at easing the description of the complex application data flows
from a user point of view while ensuring good application performances and grid
resources usage. An example of a graphic representation of workflow description
is given in figure 2. In this figure Floating and Reference are representing data
unit to be processed and CrestLines, CrestMatch, PFMatchICP, PFRegister,
Yasmina and Baladin are processing units. Floating and Reference represent
groups of data items to be processed: processing units will be invoked as many

2 myGrid UK e-Science project: www.mygrid.org
3 GWENDIA is defined in the context of the ANR-06-MDCA-009 GWENDIA project:
http://gwendia.polytech.unice.fr

www.mygrid.org
http://gwendia.polytech.unice.fr
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time as needed to process all data items received. The user describing the appli-
cation focus on the data processing logic rather than on the execution schedule.
The structural application workflow is transformed into an execution schedule
dynamically, while the workflow engine is being executed.

 

CrestLines 

Floating Reference CL_size 

CrestMatch 
PFMOpt 

PFMatchICP 

Yasmina 

YasminaOpt 

Baladin 

BaladinOpt 

PFRegister 

Results

Fig. 2. Bronze Standard workflow

GWENDIA is represented in XML using the tags and syntax defined below:
Types: values flowing through the workflow are typed. Basic types are

integer, double, string and file.
Processors: a processor is a data production unit. A regular processor

invokes a service through a known interface. Special processors are workflow
input (a processor with no inbound connectivity, delivering a list of externally
defined data values), sink (a processor with no outbound connectivity, receiving
some workflow output) and constant (a processor delivering a single, constant
value).

Processor ports: processor input and output ports are named and de-
clared. A port may be an input (<in> tag), an output (<out> tag) or both an
input/output value (<inout> tag). The input ports also define iteration strate-
gies that control the number of invocation of the processor as a function of its
inputs.

A simple example is given below:

<workflow>
<i n t e r f a c e >

<constant name=”parameter” type=” i n t e r g e r ”>
<value >50</value>

</constant>
<source name=” r e a l s ” type=”double ”/>
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<s ink name=” r e s u l t s ” type=” f i l e ”/>
</ i n t e r f a c e >
<proces sor s>

<proce s so r name=”docking ” type=”webserv ice ”>
<wsdl u r l=”http :// l o c a l h o s t / docking . wsdl” operat ion=”dock”/>
<in name=”param” type=” in t e g e r ”/>
<in name=” input ” type=” f i l e ”/>
<out name=” r e s u l t ” type=”double ”/>
< i t e r a t i o n s t r a t e g y >

<cross>
<port name=”param”/>
<port name=” input ”/>
</cross>

</ i t e r a t i o n s t r a t e g y >
</processor>
<proce s so r name=” s t a t i s t i c a l t e s t ” type=” d i e t ”>

<s e r v i c e path=”weightedaverage ”/>
<in name=”weights ” type=”double ”/>
<in name=” va lues ” type=” l i s t ( i n t e g e r ) ”/>
<in name=” c o e f f i c i e n t ” type=”double ”/>
<out name=” r e s u l t ” type=” f i l e ”/>
< i t e r a t i o n s t r a t e g y >

<cross>
<port name=” c o e f f i c i e n t ”/>
<match tag=” pat i en t ”>

<port name=” va lues ”/>
<port name=”weights ”/>

</match>
</cross>

</ i t e r a t i o n s t r a t e g y >
</processor>

</proces sor s>
</workflow>

Data link: a data link is a simple connection between a processor output port
and a processor input port as exemplified below:

<l i nk s >
< l i n k from=” r e a l s ” to=” s t a t i s t i c a l t e s t : c o e f f i c i e n t ”/>
< l i n k from=”docking : r e s u l t ” to=” s t a t i s t i c a l t e s t : weights ”/>
< l i n k from=” s t a t i s t i c a l t e s t : r e s u l t ” to=” r e s u l t s ”/>

</l i nk s >

Workflow managers are associated with these workflow language and are in
charge of optimizing the execution of workflows. For example, MOTEUR [6]
is a data-intensive grid-interfaced workflow manager. MOTEUR can enact a
workflow represented in Scufl language or in GWENDIA language and submits
the workflow tasks to a grid infrastructure. To optimize the execution, it enables
three levels of parallelism: workflow parallelism, data parallelism and pipelining.

3.2 Workflow translation into VXDL

A workflow description represents the input/output data, the processors (a data-
processing module), and the relationship between an application’s processors. In
our model, the workflow description will be translated in a VPXI description,
specified in VXDL. Generally, to execute a complex application in a virtualized
infrastructure, one has to consider that a middleware has to supervise the exe-
cution of the different tasks. In our example, the workflow engine (MOTEUR)
and a specific task scheduler are executed for every application on independent
computing resources. Input data and the intermediate results also require the
presence of a file server. Therefore the VXDL description of any VPXI execut-
ing an application controled by the MOTEUR engine will contain a generic part
describing these 3 nodes.

The variable part of the VPXI description directly depends on the informa-
tion extracted from the workflow such as input data, the number of processors,
and the links between the processors. The computation time, the data volume
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and the number of invocations of each module is another information that can
be extracted from the workflow. Given p the number of processors (modules) of
an application, the user can naively request n virtual computing resource and
evenly split the set of resources among the workflow processors. Each module
therefore has n/p resources. This will of course be sub-optimal since the proces-
sors have different execution times. A first variant of this naive strategy could
take into account extra information on the benchmarked execution time of each
module.

4 Medical application example

Let us illustrate this VPXI description and embedding problem through a com-
plex, real-scale medical-image analysis application known as bronze standard.

The bronze standard [7] technique tackles the difficult problem of validat-
ing procedures for medical-image analysis. As there is usually no reference, or
gold standard, to validate the result of the computation in the field of medical-
image processing, it is very difficult to objectively assess the results’ quality. The
statistical analysis of images enables the quantitative measurement of computa-
tion errors. The bronze standard technique statistically quantifies the maximal
error resulting from widely used image registration algorithms. The larger the
sample image database and the number of registration algorithms to compare
with, the most accurate the method. This procedure is therefore very scalable
and it requires to compose a complex application workflow including different
registration-computation services with data transfer inter-dependencies.

Bronze standard’s workflow is enacted with the data-intensive grid-interfaced
MOTEUR workflow manager [6] designed to optimize the execution of data-
parallel flows. It submits the workflow tasks to the VPXI infrastructure through
the DIET middleware [3], a scalable grid scheduler based on a hierarchy of agents
communicating through CORBA.

The estimated algorithm performance is valid for a typical database image.
In the experiments reported below, we use a clinical database of 32 pairs of
patient images to be registered by the different algorithms involved in the work-
flow. For each run, the processing of the complete image database results in the
generation of approximately 200 computing tasks. As illustrated in figure 2, the
workflow of the application has a completely deterministic pattern. All proces-
sors of this application have the same number of invocations. The execution time
and the data volume transferred of each processor have been mesured in initial
microbenchmarks reported in table 1.

Let us now consider a request for a VPXI composed of 35 nodes to execute
Bronze Standard’s workflow. Three nodes will be dedicated to the generic part :
1 node for MOTEUR, 1 node for the middleware server and 1 node for the
database server. The 32 nodes left are distributed and allocated proportionally
to the execution time of the workflow processors : 3 nodes for CrestLines, 1
node for CrestMatch, 1 node for PFMatchIP, 1 node for PFRegister, 22 nodes
for Baladin, and 4 nodes for Yasmina. Then, for this same computing-resources
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Module Execution time Data volume

CrestLines 35s 32MB

CrestMatch 4s 36MB

PFMatchICP 14s 10MB

PFRegister 1s 0.5MB

Yasmina 62s 22MB

Baladin 250s 25MB

Table 1. Execution time and processed data volume for each module of bronze stan-
dard.

set, several variants of VPXI descriptions with different network topologies can
be expressed. We exemplify developing two different VPXI descriptions. The
listing below presents a VXDL description of a virtual node (MOTEUR) and a
computing cluster (Baladin).

<vxdl : resource>
<vxdl : id>Moteur</vxdl : id>
<vxdl : ramMemory>

<vxdl : min>4</vxdl : min>
<vxdl : minUnit>GB</vxdl : minUnit>

</vxdl : ramMemory>
</vxdl : resource>
<vxdl : group>
<vxdl : id>Cluster Ba lad in </vxdl : id>
<vxdl : funct ion>

<vxdl : id>computing</vxdl : id>
</vxdl : funct ion>
<vxdl : s i z e >

<vxdl : min>22</vxdl : min>
</vxdl : s i z e >
<vxdl : resource>

<vxdl : id>Node Cluster Baladin </vxdl : id>
<vxdl : ramMemory>

<vxdl : min>2</vxdl : min>
<vxdl : minUnit>GB</vxdl : minUnit>

</vxdl : ramMemory>
</vxdl : resource>

</vxdl : group>

Fig. 3. VPXI description of the bronze standard’s workflow.
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Figure 3 illustrates the description of a VPXI using graphs. All components
and network links required to execute bronze standard’s workflow are repre-
sented. We developed two descriptions considering this scenario: in VPXI 1 the
network is composed by two links type, one with low latency intra cluster and
the other one with a maximum latency of 10 ms to interconnect the clusters.
In VPXI 2 the network comprises three virtual links: one with a low intra-
cluster latency (maximum latency of 0.200 ms), another one with a latency of 10
ms interconnecting the components except one asking for a maximum latency
of 0.200 ms to interconnect CrestMatch (dark blue) with the components PF-
MatchICP, Yasmina and Baladin (blue in the figure). Listing below shows the
VXDL description of this communication-intensive link.

<vxdl : l ink>
<vxdl : id>Communication Intens ive </vxdl : id>
<vxdl : d i r e c t i on >bi</vxdl : d i r e c t i on >
<vxdl : latency>

<vxdl :max>0.200</vxdl :max>
<vxdl : maxUnit>ms</vxdl : maxUnit>

</vxdl : latency>
<vxdl : pair>

<vxdl : source>Cluster CrestMatch </vxdl : source>
<vxdl : de s t ina t i on >Cluster Ba lad in </vxdl : de s t ina t i on >

</vxdl : pair>
<vxdl : pair>

<vxdl : source>Cluster CrestMatch </vxdl : source>
<vxdl : de s t ina t i on >Cluster Yasmina </vxdl : de s t ina t i on >

</vxdl : pair>
<vxdl : pair>

<vxdl : source>Cluster CrestMatch </vxdl : source>
<vxdl : de s t ina t i on >Cluster PFMatchICP</vxdl : de s t ina t i on >

</vxdl : pair>
<vxdl : pair>

<vxdl : source>Database</vxdl : source>
<vxdl : de s t ina t i on >Cluster CrestMatch </vxdl : de s t ina t i on >

</vxdl : pair>
</vxdl : l ink>

Let us now illustrate how each VPXI description can be embedded in a
physical substrate. We propose two different solutions for both VPXI, which
correspond to four different physical allocations as represented in figure 4. In this
example, Site 1 and Site 2 represent two geographically-distributed-resources
sets.

In VPXI 1 - Allocation I, intra-cluster link specification enables the al-
location of loosely connected resources. In this embedding solution, 1 virtual
machine per each physical node is allocated.

In VPXI 1 - Allocation II each physical node in clusters CrestMatch,
PFRegister, Yasmina, and Baladin are allocated 2 virtual machines.

The VPXI 2 - Allocation III respects the required interconnection allo-
cating corresponding resources in the same physical set of resources (such as
a site in a grid). This embedding solution explores the allocation of 1 virtual
machine per physical node.

VPXI 2 - Allocation IV explores the same physical components as Allo-
cation III but allocates 2 virtual machines per physical node in the CrestMatch,
PFRegister, Yasmina, and Baladin clusters.
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Fig. 4. Allocations of descriptions VPXI-1 and VPXI-2.
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5 Experiments in Grid’5000

To have a better insight on the influence of VPXI description, we deploy different
virtual infrastructures for executing the proposed workflow in the Grid’5000
physical substrate managed and operated by the HIPerNET framework.

5.1 HIPerNet framework and Grid’5000 substrate

The HIPerNET software4 [11] aims to provide a framework to build and manage
private, dynamic, predictable and large-scale virtual computing environments,
that high-end challenging applications, like biomedical or bioinformatic applica-
tions, can use with traditional APIs: standard POSIX calls, sockets and Message
Passing (MPI, OpenMP) communication libraries. With this framwork, a user
preempt and interconnect virtually, for a given timeframe, a pool of virtual re-
sources from a distributed physical substrate in order to execute his application.
The originality of HIPerNet is to combine system and networking virtualiza-
tion technologies with crypto-based security, bandwidth sharing and advance
reservation mechanisms.

The HIPerNet substrate is transparent to all types of upper layers: upper
layer protocols (e.g. TCP, UDP), APIs (e.g. sockets), middleware (e.g. Globus,
Diet), applications, services and users. Hence, the HIPerNet model maintains
backward compatibility with existing APIs, Middlewares and Applications which
were designed for UNIX and TCP/IP APIs. Therefore, users do not need to learn
new tools, developers do not need to port applications, legacy user authentication
can still be used to enroll a user into a VPXI.

The HIPerNet framework aims at partitionning a distributed physical infras-
tructure (computers, disks, networks) into dedicated virtual private computing
environment dynamically composed. When a new machine joins the physical
resource set, HIPerNet prepares its operating system to enable several virtual
machines (VMs) to be instantiated dynamically when required. This set of po-
tential virtual machines is called an HIPerSpace and it is represented in the
HIPerSpace Database. The HIPerSpace is the only entity that see the physical
entities. A resource, volunteer to join the resource pool, is automatically initi-
ated and registered in the HIPerSpace database. The discovery of all the devices
of the physical node is also automatic. An image of the specific HIPerNet op-
erating system is deployed on it. In our current HIPerNet implementation, the
operating system image contains basically the Xen Hypervisor and its domain of
administration called domain 0 (Dom 0). The HIPerSpace registrar (Operational
HIPerVisor) collects and stores persistently data and manages accounts (e.g., the
authentication database). It is therefore hosted by a physical machine outside
of the HIPerSpace itself. For the sake of robustness and scalability, HIPerSpace
registrar can be replicated or even distributed

We run the application within several virtual infrastructures created and
managed by our HIPerNet software within the Grid’5000 testbed[4]. Grid’5000

4 http://www.ens-lyon.fr/LP/RESO/software/HIPerNET
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enables user to request, reconfigure and access physical machines belonging to
9 sites distributed in France. In our experiment, we reserve several Grid’5000
nodes to compose a pool of physical resources that we initialize to form an
HIPerSpace. To instanciate an HIPerSpace, specific tools provided by the hosted
Grid are used. This is the only part aware of the physical infrastructure of the
HIPerNet Software. All the other parts are independant of the physical resources
because they use them indirectly through the services provided by HIPerNet. In
Grid’5000, the HIPerSpace appears like a set of ordinary jobs scheduled by OAR
with the use of a specific operating system image deployed by kadeploy

5.2 Medical imaging application deployment on the testbed

For testing VPXIs, a system image containing the operating system based on
a standard Linux distribution Debian Etch with a kernel version 2.6.18-8 for
AMD64, the domain-specific image processing services and the middleware com-
ponents (MOTEUR and DIET) was created. The experiments on the VPXIs
described in the section 4 were performed. In each experiment, we repeated
the application 10 times to measure the average and standard deviation of the
application makespan, the data transfer and task execution time. The physical
infrastructure is reserved on the Grid’5000 clusters: capricorne (Lyon), bordemer
(Bordeaux) and azur (Sophia) which CPUs are 2.0 GHz dual-cores Opterons.
The distance between clusters is 500km and they are connected through 10Gbps
links. Each VPXI is composed of 35 nodes divided in generic and variable part:
3 nodes are dedicated to generic part (MOTEUR, DIET, file server) using 1
CPU per node and the remaining 32 nodes of the variable part are allocated
dependently on the VPXIs (VPXI 1 - Allocation I and VPXI 2 - Allocation III
used 1 CPU per node while VPXI 1 - Allocation II and VPXI 2 - Allocation IV
used 1 CPU core per node).

Coallocating resources on one grid site: the application’s makespan on
the VPXI 2 - Allocation III and VPXI 2 - Allocation IV is 11min 44s (±49s) and
12min 3s (±50s) respectively. This corresponds to a +3.8% makespan increase,
due to the execution overhead when there are two virtual machines collocated
on the same physical resource. Indeed, we present in the table 2 the average
execution time of application services on the VPXI 2 - Allocations III and IV.
We can observe that the average execution overhead is 5.17% (10.53% in the
worst case and 1.28% in the best case).

Resources distributed over 2 sites: when porting the application from
a local infrastructure to a large scale infrastructure, the data transfer increases.
Table 3 presents the data transfer time (s) of the application services on VPXI 2
- Allocation IV (local) and VPXI 1 - Allocation II (distributed over 2 sites). The
measured overhead is 150% in the worst case. Conversely, some local transfers
may be slightly reduced. In the case of our application however, this overhead
has little impact on the application makespan since it is compensated for by the
parallel data transfer and computations. Indeed, the makespan is 12min (±12s)
and 12min 11s (±20s) on VPXI 1 - Allocation I and VPXI 1 - Allocation II
respectively, very similar to the performance of VPXI 2 - Allocation IV.
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Services Allocation III Allocation IV variation

CrestLines 34.12 ± 0.34 36.84 ± 5.78 +7.97%

CrestMatch 3.61 ± 0.48 3.99 ± 0.63 +10.53%

PFMatchICP 11.93 ± 2.76 12.75 ± 5.35 +6.87%

PFRegister 0.78 ± 0.18 0.79 ± 0.18 +1.28%

Yasmina 59.72 ± 14.08 61.53 ± 13.98 +3.03%

Baladin 244.68 ± 16.68 247.99 ± 19.51 +1.35%

Table 2. Execution time on VPXI 2 - Allocations III and IV

Services Allocation IV Allocation II variation

CrestLines 2 ± 0.45 3.01 ± 1.6 +50.5%

CrestMatch 1.99 ± 0.34 1.83 ± 0.36 -8.04%

PFMatchICP 1.3 ± 0.4 3.25 ± 0.13 +150%

PFRegister 0.51 ± 0.23 0.43 ± 0.09 -15.69%

Yasmina 1.19 ± 0.27 1.16 ± 0.21 -2.52%

Baladin 1.17 ± 0.38 1.81 ± 1.03 +54.7%

Table 3. Data transfer time on the local VPXI 2 - Allocation IV and large scale VPXI
1 - Allocation II infrastructure

Resources distributed over 3 sites: further distributing computational
resources causes an additional increase of the data-transfer overheads. An ad-
ditional experiment with VPXI 1 - Allocation II the generic part of which is
located in Lyon while the variable part is randomly distributed in Lyon, Bor-
deaux and Sophia leads to a makespan of 12min 13s (± 30s) with a data-transfer
overhead of 176% in the worst case.

6 Related work

In this section, we briefly describe related works which explore a virtual- infras-
tructure composition on distributed resources, as well as the mapping process.

In [8] the authors propose the use of virtual grids to simplify application
scheduling. Their descriptive language, vgDL, enables users to specify an initial
description of the desirable resources, resulting in a pre-selected virtual grid cor-
responding to a simple vgDL description. vgDL proposes three aggregation types
to specify the interconnection network: LooseBag, TightBag and Cluster. The
approach proposed in VXDL is more comprehensive and allows the definition of
the infrastructure’s shape through the description and configuration of virtual
links.

The approach of controlled virtual network infrastructures, running in par-
allel over a shared physical network is an emerging idea offering a variety of
new features for the network. Cabo [5] proposes to exploit virtual networks for
Internet Service Providers, distinguishing them from the physical infrastructure
providers, and giving them end-to-end control. HIPerNET shares the same vision
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but focuses more on distributed computing application and proposes a language
to express the infrastructure requirements in capacity, time, and space.

In [2], the authors propose VINI, a virtual network infrastructure that allows
several virtual networks to share a single physical infrastructure, in a similar way
to HIPerNET. VINI makes the network transparent to the user, representing
each component of the network. This being one of our main interests, HIPer-
NET provides a language, VXDL, to specify the topology of those components.
The GENI project [1] aims to build a shared infrastructure for hosting multiple
types of network experiments. VXDL can help in the description of slices and
HIPerNET is an orchestration framework that suits GENI’s requirements.

7 Conclusion and perspectives

This paper proposed the VXDL language to specify virtual infrastructures and
the HIPerNET framework to deploy and execute them. It illustrated the usage
of these combined tools by a real application. In particular it developed the
process of translating an applicaton’s workflow into a VXDL description of a
virtual private execution-infrastructure. This paper detailed the description of
several virtual infrastructures for executing the same medical applications that
require a high quality of service and a scalable infrastructure. Experimental
results of the deployment and execution of this application in different virtual
infrastructures using the HIPerNET framework within the Grid’5000 substrate
assess the pertinence of the VXDL language and of the HIPerNET framework.
Based on these promising results, our future works will explore an approach to
automate the translation of the workflow in a VXDL description, with the aim of
capitalising on the expertise of application and workflow developers to ease the
embedding process while improving end-user satisfaction as well as infrastructure
usage.
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