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Abstract—Allocating IT resources to Virtual Infrastructures
(VIs) (i.e., groups of VMs, virtual switches, and their network
interconnections) is a problem which belongs to a class known
to be NP-hard. Several approaches designed to run on CPUs
have been proposed for reducing the search space and finding
suitable allocation solutions. Most algorithms, however, face
scalability issues when considering current cloud data centers
comprising thousands of servers. To overcome these limitations,
this work offers a set of allocation algorithms designed for
Graphic Processing Units (GPUs). Experimental results eval-
uate the scalability of the algorithms and demonstrate their
ability to handle three large-scale data center topologies.

1. Introduction
Under the Cloud computing model, Infrastructure-as-a-

Service (IaaS) providers deliver on-demand access to VIs
comprising virtual resources that are deployed onto Data
Center (DC) infrastructure. Allocating a VI consists in
meeting Quality-of-Service (QoS) requirements of Virtual
Machines (VMs) and provisioning virtual network (i.e.,
switches and links) to tenants. Each tenant can customize a
VI according to the requirements of an application whose
performance can be influenced by the network configuration
and assigned resources.

Cloud providers rely on complex mechanisms to allocate
physical resources for hosting VIs. The allocation task can
be viewed as a graph embedding problem [1]. Given a graph
Gv = (Nv, Lv) representing a VI request (where Nv are
virtual nodes, switches and VMs, and Lv are virtual links)
and a graph Gs = (Ns, Ls) representing the cloud data
center (Ns is composed of servers and data forwarding
resources, and Ls denotes physical links), the problem is
to find a mapping function f(Gv) injector in Gs, respecting
the QoS for vertices and edges.

An allocation solution can optimize a single or multiple
criteria such as decreasing DC load and VI latency, reducing
energy consumption, among others [1]. Such problem falls
into a class known to be NP-hard [2]. The number of
possible allocation solutions for a given VI request grows
with the size of the VI and DC graphs, which is an issue as
modern DC architectures, such as Fat-Tree [3], BCube [4],
and DCell [5] can have thousands of servers and links.
Existing solutions are little applicable to real cloud DCs due

to their CPU-driven design usually combined with topology-
oriented pruning techniques.

GPUs offer a high-degree of parallelism, high through-
put memory and general purpose programming tools, such
as Compute Unified Device Architecture (CUDA) [6]. De-
signing allocation algorithms for GPUs, however, is not
trivial as well-known graph algorithms must be refactored
to run efficiently. Moreover, the literature on VI allocation
is vast and contains algorithms for isomorphism identifi-
cation, vertex and edge ranking [7], data clustering [8],
and path selection [9]. Refactoring is essential as most
traditional graph algorithms employ techniques designed to
run on CPUs, such as backtracking, which are inefficient
on GPU architecture. As GPU Single Instruction Multiple
Data (SIMD) operations execute in groups of threads, the
occurrence of a single operation that diverges from others
can result in lost parallelism.

Therefore, this work makes two main contributions: (i)
We refactor a set of graph algorithms that are then used to
compose allocation strategies as part of a GPU-accelerated
framework for VI allocation. Microbenchmarks are used to
compare the speedup of each individual algorithm against
CPU-based approaches. The results show the applicability
of GPU algorithms to large-scale cloud data centers. (ii)
Performance evaluation results demonstrate the benefits of
massively parallel processing for VI allocation using the
strategies proposed in the framework. The framework, ex-
amples, and documentation are publicly available. 1

The rest of this paper is organized as follows. §2 reviews
the literature and challenges on VI allocation. §3 defines
the GPU-tailored algorithms for the VI allocation prob-
lem. Proof-of-concept allocation mechanisms build from the
GPU-based framework are presented in §4 and simulation
results are discussed in §5. §6 concludes the paper.

2. Background and Related Work
2.1. Network Topologies of Cloud Data Centers

Data center topologies are commonly designed to sup-
port thousands of servers offering high bandwidth and low
latency. By virtualizing the physical hardware of servers and
network devices DCs can host a large number of applications

1. Available at https://bitbucket.org/lucasnesi/vnegpu.
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and VIs [10], [11]. Current DC topologies are designed
for supporting large-scale networking virtualization tech-
niques [11] where each topology has specific characteristics
that can influence VI placement.

DCell is a recursively built topology that provides high
bandwidth and scales doubly exponentially as the node de-
gree increases. It reduces the deployment cost by using mini-
switches to scale up instead of high-end switches [5], and
has a general structure that interconnects basic units [12]. A
DCell construction starts with a DCell0: a single mini-switch
that interconnects n servers. At a DCell1, n + 1 DCell0s
are linked following a connection function ρL. In general,
a DCellk is recursively composed of tk−1 + 1 DCellk−1s,
where tk−1 denotes the number of vertices on DCellk−1.
Each server has a specific identification at each DCell level.
At k > 0 level, each server is identified by [a, b], where a
is the DCellk−1 and b is the internal identifier.

BCube relies on shipping-containers, a modular data
center topology structured as a hyper-cube [4]. Similar to
DCell, it uses mini-switches for interconnecting servers, but
servers also act on data forwarding. The topology is recur-
sively composed. Initially, a BCube0 comprises n servers
connected to an n-port mini-switch. A BCube1 is the union
of n BCube0s, connected to n mini-switches. In general,
a BCubek is composed of n BCube(k−1)s and nk n-ports
switches. Concerning the VI allocation onto a BCube, two
properties are worth mentioning: (i) the shortest path be-
tween servers is 2(k+1) in the worst case, and (ii) different
throughput can be observed between communicating servers
when an intermediate node acts on data forwarding.

Fat-Tree is a specialized Clos network [3] that uses
multiple low-cost commodity k-port switches for intercon-
necting servers. A centralized network controller handles
dynamic data forwarding and manages all switches [10].
The design results in full bisection bandwidth between
pods (the basic building block), where each pod contains
two layers of k/2 switches (aggregation and edge). The
aggregation switches are interconnected to core switches
(there are (k/2)2 core switches). A Fat-Tree supports up
to k3/4 servers, and some properties related to virtual re-
source provisioning are: (i) independently of k, the distance
between servers from different pods is 6 hops, and (ii) the
number of paths between servers from different pods is the
number of core switches, (k/2)2.

2.2. CPU-based Algorithms for VI Allocation

Mapping VMs, switches, and links to physical DC re-
sources while respecting QoS constraints and meeting a
provider’s allocation goal is an NP-hard problem [2]. The
state-of-the-art provides Virtual Network Embedding (VNE)
and cloud solutions for this mapping problem.

Mixed Integer Program (MIP) or Linear Program (LP)
techniques offer optimal solutions that are generally used
as baseline for comparisons [13], [9], but the problem
complexity and search space often create opportunities for
heuristic-based solutions [1]. [13] created two heuristics for
joint allocation of virtual processing and communication

resources designed to run on CPUs and the simulation
scenarios considered a limited set of candidate resources.

Previous work also proposed grouping techniques for
reducing the search space or problem complexity [8], [14].
Their scalability and application to real DCs, however,
remain a challenge as aggressive pruning of physical and
virtual candidates may lead to partial and inefficient so-
lutions under certain topologies [14]. [15] investigated a
topology-aware approach to reconfigure and allocate initially
rejected requests, whereas [8] focused on a subset of the
VNE problem, the virtual cluster allocation, proposing a
polynomial-time algorithm based on hose model.

Cloud simulators are also used mainly to assist in algo-
rithm analysis. The CloudSim simulator, for instance, has
been widely used for analyzing the scheduling of VMs [16]
and virtual networking on cloud DCs. Simulators, however,
suffer from slow execution time and scalability issues, thus
preventing the evaluation of very large scenarios.

We argue that GPU-accelerated algorithms can be suc-
cessfully applied to speed up heuristics and simulators,
hence allowing for evaluating large-scale scenarios that
more closely match the requirements of real cloud DCs.
Therefore, §3 summarizes a set of GPU algorithms for VI
allocation. The microbenchmark analysis (§3.6) combined
with the discussion on allocation policies (§5) highlight how
the GPU-accelerated algorithms advance the state-of-the-art.

3. GPU-Based Algorithms for VI Allocation
3.1. Data Structure and Representation on GPUs

The large amount of data needed to represent cloud DC
and VI requests can impact the allocation speedup. As a DC
graph and a VI request have common characteristics, and
both are sparse graphs, we extend the Compressed Sparse
Row (CSR) format [17] for representing both graphs. CSR
stores the graph topology using a directed edge represen-
tation enabling random access on edges of any node. As
a VI is commonly formulated as an undirected graph [1],
we enhance CSR by using the Edge Map (EM) vector for
identifying the source and destination of undirected graphs.
The access of edges on directed or undirected graphs is
hence performed with O(1) time complexity. Under the
proposed scheme, tree vectors are used, namely Source
Offset (SO), Destination Indices (DI), and EM. SO’s length
is given by the number of vertices plus one, and DI’s length
is twice the number of undirected edges. The graph structure
is driven by the edges ij. For a given node i, SO[i] contains
the index in DI that has the first target node j whereas the
index SO[i + 1] − 1 in DI contains the last target. Hence
DI[SO[i]] and DI[SO[i+ 1]− 1] store, respectively, the first
and the final target nodes from ij pairs. For accessing an
edge variable for a directed edge k, it is necessary to get
the undirected id of the edge, given by EM[k].

3.2. Algorithms for Comparing Edges and Vertices
Page Rank (PR) is commonly used to rank the nodes

of a graph based on a given metric and its edges. It is
recurrently adapted and used on GPU [18]. For applying



the GPU-accelerated PR on VI allocation, we integrate an
on-the-fly definition of a user-specified function to calculate
the node rank, as well as an adaptation of the power iteration
method to estimate the eigenvalues of a matrix. Local
Resource Capacity (LRC) [19] can be adapted to a GPU by
executing their core function in parallel for different edges
and vertices. Kernels can be prepared and scheduled such
that each group of threads can achieve coalesced memory
access. Best-Fit (BF) & Worst-Fit (WF), the GPU imple-
mentation iterates over VI nodes, matching each VI node
to the most appropriated DC either in a BF or WF fashion.
This step runs on the GPU using a single kernel called at
each VI node, performing a reduction over the DC nodes.

3.3. Shortest Path Algorithms
Dijkstra. This iterative algorithm checks at each round

the frontier nodes (whose minimum distance was updated
and can change the distance of other nodes). Our version
for GPUs resembles approaches found in the literature [20],
however we also need to know all the shortest paths (in
number of hops), and not only the minimum distance. The
GPU method consists of visiting all the frontier nodes at
different parallel threads. Hence the maximum number of
iterations is the longest minimum path between all nodes.
On modern DC topologies (§2.1), the longest path is fixed
with a small value (e.g., 6 for a Fat-Tree). Formally, the
GPU implementation relies on four vectors: F denotes the
frontier nodes, MD is the minimum distance for each node,
MDT the temporary MD vector, and P the path to the node
(which stores the previous node with the shortest path). In
the beginning, only the start node is marked as active on
F and its distance on MD is set to 0. All other distances
on MD are set to ∞. Each iteration executes two kernels.
In the first one, each thread is assigned to a frontier node
and it relaxes the distance of all adjacent nodes, updating
the MDT vector. This operation uses the atomic function
atomicMin() to avoid concurrency effects. The second kernel
processes all nodes whose distance MD differs from MDT ,
setting the nodes as new frontiers and updating the MD
vector. Finally, P stores the selected path. The algorithm
ends when all nodes on F are marked as inactive.

R-Kleene extends the original Kleene algorithm for
transitive closure to compute the shortest path from all to all
nodes [21]. It performs standard matrix operations changing
its internal operators: multiplication with a sum, and sum
with min; defining the new operators ⊗ and ⊕ respectively.
The operation with matrices A,B,C that C = A ⊗ B is
given by Cij = minn−1

k=0 Aik +Bkj . We extend an algorithm
already adapted to GPU [22] by adding the features needed
to deal with any DC or VI topology, and calculating custom
distances on-the-fly. As it uses a recursive structure that is
not suitable to GPU and the time-consuming routines are
the execution of the new operators, the main recursive flow
continues to run on CPU, and only the custom operations are
translated to GPU kernels. The operations are implemented
based on matrix multiplication using shared memory. When
the input matrix reaches a small value (e.g., 16 × 16) it is
calculated on GPU using the Floyd Warshall algorithm.

3.4. Data Clustering Algorithms
K-Means is an unsupervised learning algorithm that can

cluster a dataset into k arbitrary clusters using a custom
similarity function [23]. The algorithm selects k random
data points as cluster centers, and iteratively, attributes each
data point to a cluster that is similar or near to its center, and
then recalculates the center of each cluster. Determining k in
a graph is often difficult as K-Means uses random numbers
and cluster quality can be affected by bad generators. We
define the similarity function of a node as the sum of all
distances from it to its cluster’s member nodes. There are 3
time-consuming operations in the K-Means implementation
for GPU. The first is choosing to which cluster each node
belongs; an operation achieved by a kernel that assigns each
thread to a node, and computes its distance to all clusters
centers, setting its cluster to the nearest one. After that, all
centers are recalculated and a kernel computes the distance
of each node to other nodes in the same cluster. The last
step is to decide which node is the center of its cluster,
performed with a simple reduction procedure. The algorithm
stops when the centers do not change after an iteration.

Markov Clustering (MCL) is an algorithm specific to
graphs based on edge’s flow and Markov chain. MCL can
arbitrarily find the number of clusters in a graph based on
its flow, but it contains other parameters that are difficult to
configure. It does not have high-level operations to describe
node insertion and deletion in a cluster, but at the end of
the process, these clusters can be derived from a probability
flow matrix. Initially, MCL needs a stochastic flow matrix
M constructed using an arbitrary distance function. In the
VI allocation, the matrix can be customized using topology
attributes like latency or bandwidth. The rest of the algo-
rithm applies two operations at each iteration: the expansion,
that is the power p of the stochastic matrix, Mp; and the
inflation operator given by (Γr(M))ij =

(Mij)
r∑m

k=1
(Mkj)r

that

uses an r to control the inflation power.
The GPU implementation creates a specific kernel for

each main operation. For the expansion operation, we use
the cuBLAS library with its SEGMM function [24]. We
split the inflation operation into 2 kernels as the sum of the
column is reused at all cells belonging to the column. The
first inflation kernel performs a basic reduction sum for each
column, and the second computes the inflation equation for
each cell. Both kernels assign the threads to each matrix
column and iterate over the cells. The algorithm stops when
the maximum cell difference of the matrix between two
iterations is less than an error ε. In the end, the residual
values at a column j of the matrix M contain the group to
which j is assigned. When a node is placed at two groups
we select the group with the more significant value.

3.5. Graph Allocation Algorithm
Graph allocation, an important part of the strategies

described later, is performed in two steps. The first step
iterates over the VI nodes, matching each one to the most
appropriated DC node using either BF or WF. If a node
cannot be allocated, the algorithm aborts and the VI is



rejected. The second step maps the edges of the VI to the
DC paths finding the shortest valid path.

3.6. Speedup Analysis Using Microbenchmarks
The allocation algorithms refactored for GPUs are indi-

vidually evaluated to compare their speedup against their
CPU counterparts. Two GPUs are used for performance
analysis (NVIDIA GeForce GTX 1080 /8GB, and NVIDIA
Titan XP /12GB), hosted by a machine Intel i7 2600K
/ 32GB RAM. The machine runs Ubuntu 17.04 Server
with CUDA 9.0.176, NVIDIA driver 384.81, and GCC 5.
We pick the largest DC configurations supported by the
GPU to represent the worst-case microbenchmarks. The
upper-bound memory limit is given by MCL and R-Kleene
(O(n2)). As the GTX 1080 board has 8GB of memory, we
use a Fat-Tree k = 48 (30528 nodes and 165888 edges),
BCube 7, 4 (28812 nodes and 84035 edges), and DCell 11, 2
(19152 nodes and 35112 edges), with a single precision
variable type. Topology sizes are larger than those identified
in the literature. The results are public available [25] and
the microbenchmarks highlight that GPU speed up most
algorithms for VI allocation. It is worth pointing out that
multiple executions of an algorithm, or combinations of
algorithms, may be required to find a suitable allocation.

4. GPU-Driven Allocation Framework
4.1. Framework Structure

The framework was developed as a header-only C++
library based on templates. Moreover, the core data struc-
ture, a graph, can be created with custom variables. The ele-
mentary composing functions can be extended through user-
specified configurations (number of parameters and types
of variables) for comparing and processing variables (nodes
and edges weights). No prior knowledge on GPU program-
ming is required to use the framework since processing
is automatically parallelized by the execution engine. The
graph structure requires 2 template arguments, the variable
type (integer, float, or double) and the graph’s variable struct
(containing node capacity, CPUs, memory) for the topology.
The framework has pre-defined types to represent weights:
CPU and memory for nodes and bandwidth for the links.
Moreover, different functions require their own methods that
are customized and placed along with structures.

4.2. Allocation Strategies
We propose 4 allocation strategies (Figure 1) for com-

bining the GPU algorithms for data clustering, vertex and
edge comparison, and graph allocation. Path Oblivious
Allocation consists in executing either WF or BF for node
comparison while ignoring shortest path selection, whereas
Graph Allocation, §3.5, executes either WF or BF for node
comparison followed by Dijkstra. The algorithm used for
Clustering depends on the network topology; MCL is used
for Fat-Tree and K-Means for BCube and DCell. Under each
strategy, when an allocation is not viable, the VI is rejected
and the previous DC state is restored.

Strategy 1 is the direct application of the graph al-
location algorithm with BF or WF for comparing nodes
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Figure 1. GPU-based allocation strategies.

followed by Dijkstra for path selection, hence resulting in
the variations 1-BF and 1-WF.

Strategy 2 uses the data clustering algorithm (§3.4) in
the DC graph for reducing the number of comparisons need
for finding a solution. The strategy consists of 2 steps: (i)
mapping the VI to DC clusters performed in a path oblivious
manner, and then (ii) mapping and extending the small DC
graph on the original graph. The extension is the inverse
operation of clustering. The variations consist of using BF
first and WF second for the allocation steps or vice-versa.

Strategy 3 uses the data clustering algorithm on the
VI graph. Different from Strategy 2, it uses only the graph
allocation step as only the VI is clustered. The mapping must
set the clustered VI to a unique DC node. Then the strategy
embeds and extends the VI graph on the original one. The
quality of the clusters is crucial because the allocation can
be impossible if clusters are too large. Again, there are two
possible variations for this using either BF or WF approach.

Strategy 4 applies the data clustering algorithm to both
graphs. Similar to Strategy 2 it has two allocation steps.
First, the strategy allocates a clustered VI graph into a
clustered DC graph. Second, the strategy expands the al-
location to the original DC topology, whereby mapping the
original VI respecting the clusters discovered on step one.
The variations of this strategy also consist of using BF first
and WF second or vice-versa.

5. Experimental Setup & Analysis
A discrete event simulator was included in the frame-

work to drive the arrival and termination of requests. The
simulation spans the submission of 3000 VIs to be allocated
on a cloud DC distributed over 100 discrete intervals. A VI
can last from 10 to 50 intervals. All random variables are
drawn from uniform distributions, and the results are means
of 10 executions varying the simulation seed.

Five metrics were selected to evaluate the simulation:
(i) Acceptance rate: the percentage of accepted requests.
(ii) Number of allocated vCPUs: provides insights on the
use of computing DC resources. (iii) Fragmentation: the
percentage of physical resources hosting at least one request.
(iv) DC footprint: a metric used to support load balancing
algorithms, it measures the number of active physical re-
sources in a DC. (v) Execution time: essential to showing
the potential application of GPU to supporting VIs allocation
on large-scale cloud DC.

5.1. VI Requests and Cloud DC
VIs have a traditional tree structure formed by 4 levels,

each level having from 4 to 7 times more nodes than the
upper level. The largest request has 400 nodes, being 343



VMs and 57 virtual switches, whereas the smallest has 85
nodes, with 64 VMs and 21 virtual switches. Regarding
QoS requirements, VMs request minimum CPU and mem-
ory configuration whereas network links request minimum
bandwidth. The VMs composing a VI are homogeneously
defined based on T2.medium and T2.xlarge Amazon EC2
instance types. The virtual link bandwidth is randomly
selected from two classes, the CPU-intensive applications
(3 Mbps) and the network-intensive (30 Mbps).

The configuration for DC servers is based on the Ama-
zon hardware to approximate the simulation from real cloud
configuration. Servers have 20 CPUs and 256GB RAM. The
DC links have bandwidth based on the network topology
(§2.1). The Fat-Tree has 10 Gbps for the connection between
core and aggregation switches and 1 Gbps for others links.
In the BCube and DCell topology, all links have 1 Gbps.
The simulation is executed with 3 large-scale DCs with
similar numbers of servers: Fat-Tree 40 (16000 servers),
DCell 11, 2 (17556 servers) and BCube 7, 4 (16807 servers).
The configuration for each topology was defined to accom-
modate all data (DC, requests and algorithms structures) on
GPU memory. As the strategies under analysis combine the
individually benchmarked algorithms (§3.6), the maximum
number of DC nodes is slightly reduced, but it still extrap-
olates the scenarios considered in the literature.

5.2. Experimental Results
VI Acceptance Rate and Number of vCPUs. Figure 2

summarizes the results on acceptance rate and number of
vCPUs allocated for Fat-Tree, BCube, and DCell topologies.
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Figure 2. Acceptance rate and number of allocated vCPUs.

The top charts show that 2-BFWF and 4-BFWF are the
only strategies with less than 60% of acceptance rate. 1-WF
gives the best acceptance rate, around 80%, for all topolo-
gies. BCube is the most stable topology with acceptance
rate between 60% and 80% for all algorithms. The bottom
charts show the number of allocated vCPUs, and we observe
that low acceptance rate results in few allocated vCPUs, i.e.,
FatTree and DCell with 2-BFWF algorithm.

The results show that 2-BFWF, 3-BF, 3-WF and 4-
BFWF accept less VI requests compared to 1-BF, 1-WF, 2-
WFBF and 4-WFBF strategies. There are two main reasons
for this. In Strategy 3, although clustering can decrease
the number of comparisons to find a solution, the resulting
cluster size can request more capacity than the residual on
DC nodes, hence constraining the allocation. Under BFWF
variants, the strategies execute the first embedding step

(§4.2), but the later expansion and mapping processes. This
also occurs in the WFBF variants, but only when the DC
is nearly full. For that reason, we select the variants 1-BF,
1WF, 2WFBF and 4-WFBF to continue the analysis.

DC Footprint and Fragmentation. The footprint and
fragmentation for all topologies are depicted in Figure 3.

0 0.2 0.4 0.6 0.8 1
Fragmentation

0.0

0.2

0.4

0.6

0.8

1.0

D
C

 S
er

ve
rs

 F
oo

tp
rin

t

Fat-Tree 40

0 0.2 0.4 0.6 0.8 1
Fragmentation

0.00

0.02

0.04

0.06

0.08

0.10

D
C

 L
in

ks
 F

oo
tp

rin
t

Fat-Tree 40

0 0.2 0.4 0.6 0.8 1
Fragmentation

0.0

0.2

0.4

0.6

0.8

1.0

D
C

 S
er

ve
rs

 F
oo

tp
rin

t

Bcube 7, 4

0 0.2 0.4 0.6 0.8 1
Fragmentation

0.00

0.06

0.12

0.18

0.24

0.30

D
C

 L
in

ks
 F

oo
tp

rin
t

Bcube 7, 4

0 0.2 0.4 0.6 0.8 1
Fragmentation

0.0

0.2

0.4

0.6

0.8

1.0

D
C

 S
er

ve
rs

 F
oo

tp
rin

t

DCell 11, 2

0 0.2 0.4 0.6 0.8 1
Fragmentation

0.00

0.14

0.28

0.42

0.56

0.70

D
C

 L
in

ks
 F

oo
tp

rin
t

DCell 11, 2

1-BF 1-WF 2-WFBF 4-WFBF

Figure 3. DC footprint and fragmentation for servers and links.

This comparison permits the analysis on how well the
resources are consumed, since high fragmentation with low
footprint means that many servers and links are online
with low utilization, hence increasing DC cost. However,
the same growth rate of fragmentation and footprint means
that the resources are being fully utilized before turning on
another equipment, decreasing the DC cost but increasing
the chance of failure. 1-WF differs from other strategies
as it reaches 100% host fragmentation between 15% and
20% footprint, which is caused by its WF police, spreading
out the VI across the DC. The other variants have similar
results, where the host footprint and fragmentation grow
together linearly until 100%. These results indicate that 1-
WF is suitable to cases where the scattering is necessary
to avoid faults. The variants 1-BF, 2-WFBF, and 4-WFBF
accommodate most VMs near one another, which can save
bandwidth, but can increase the chance that an eventual fault
strikes multiple VMs. The behavior on link fragmentation
and footprint is different. For Fat-Tree, link fragmentation
and footprint are less than 50% and 8%, respectively, for
all variants. Variant 4-WFBF has an interesting behavior
where it has fewer link utilization (lower footprint), and
when it reaches a certain fragmentation (±40%) it only starts
to increase footprint with lower fragmentation variation.
For two other topologies, link fragmentation reaches 100%
when footprint is 30% (BCube) and 70% (DCell) and three
variants have similar results. 1-WF, 1-BF, and 2-WFBF
reach higher link utilization than 4-WFBF.

Network Load. Figure 4 depicts the DC link utilization
in percent categories. Strategy 4 has consistent characteris-
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Figure 4. DC links load evolution for the 3 topologies: (a), (b), (c), and (d) for Fat-Tree with k = 40; (e), (f), (g), and (h) for BCube 7, 4; and (i), (j),
(k), and (l) for DCell 11, 2. Results are presented as ranges to identify the average load during the analysis.

tics across all topologies. First, it decreases the use of links
as the number of edges with 0% utilization demonstrates.
Second, it avoids overloading the links. For example, the
number of edges whose utilization is greater than 81%
is reduced on the Fat-Tree and DCell topologies when
comparing Strategy 4 to the other three. For the BCube
topology, however, it results in 1%− 20% utilization rather
than 21%− 40%; different from the other strategies.

Execution Time. The time for allocating VI requests
with GPU-accelerated algorithms is presented in Figure 5.
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Figure 5. VI allocation time in milliseconds. The time grows linearly with
the VI size, independent of the strategy or DC size.

The time grows linearly with the VI size, independent
of the strategy. Strategies that use clustering have higher
execution time due to the execution of MCL or K-Means
on DC topologies. However, this step is only required at the
beginning of the execution (it is executed once for allocating
3000 requests). These times are intentionally not showed in
Figure 5. In summary, the average time is similar to all
strategies, regardless the DC topology.

Key Observations. Strategy 1-BF has lower acceptance
rate but nearly the identical load. This scenario can be
explained as strategy 1-BF allocates more requests com-
posed of T2.xlarge type (with double the node capacity
requirements), while the other 3 strategies allocate more
VIs based on T2.medium types. For fragmentation, variant
1-BF has lower fragmentation in nodes, whereas the same
behavior is not observed for links. Strategy 4-WFBF is
the opposite, having the lowest edge fragmentation, while
strategy 1-WF has the highest fragmentation on both cases,
and 2-WFBF comes second in both cases.

An individual discussion is required for clustering algo-
rithms. Although MCL and K-Means present similar results,

the definition of their arguments is a challenging task and
can change for each DC topology. For instance, K-Means
was configured with 70 groups for B-Cube and DCell. We
found that value by dividing the number of servers by the
average request size. Also, we selected MCL for the Fat-
Tree because K-Means yielded poor clusters on it.

Regarding to execution time, the GPU-accelerated al-
gorithms computed solutions for large-scale DC topologies
in within a few milliseconds, pointing out to an applica-
bility to real public clouds. Finally, it is worth noting that
the analyzed strategies are an example of how the GPU-
accelerated algorithms can be combined to compose VI
allocation algorithms. Most consolidation algorithms from
the literature (§2.2) can be refactored and expressed by
the framework. The main goal of the present analysis was
to demonstrate the applicability of the framework, without
arguing for the application of any specific algorithm.

6. Considerations
The allocation of cloud DC resources for hosting VIs

is a challenging problem for both public and private cloud
providers. In this paper, we created a GPU accelerated
framework for allocating resources to VI. The algorithms
enable a series of customizations for designing new alloca-
tion methods, without requiring a user to know how to pro-
gram GPUs. By using microbenchmarks, all algorithms were
evaluated and their execution time compared against CPU-
based counterparts. In addition to achieving good speedup,
the framework allows for considering problem sizes much
larger than those found in the literature. To demonstrate
the use of the framework, four allocation strategies were
introduced and evaluated for allocating VI requests atop DC
topologies. Finally, the work extended the existing literature
proposing the application of GPUs to support the allocation
of VI requests on large-scale DCs. Although the focus of
this work is on VIs allocating, similar placement problems
emerge in other areas such as component-based applications
and distributed data stream processing systems [26].
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