
Network-Aware Container Scheduling in
Multi-Tenant Data Center

Leonardo R. Rodrigues,⋄ Marcelo Pasin,⋆ Omir C. Alves Jr.,⋄

Charles C. Miers,⋄ Mauricio A. Pillon,⋄ Pascal Felber,⋆ Guilherme P. Koslovski⋄
Graduate Program in Applied Computing – Santa Catarina State University – Joinville – Brazil⋄

University of Neuchâtel (UniNE) - Institut d’informatique⋆ – Switzerland

Abstract—Network management on multi-tenant container-
based data center has critical impact on performance. Tenants
encapsulate applications in containers abstracting away details
on hosting infrastructures, and entrust data center management
framework with the provisioning of network Quality-of-Service
requirements. In this paper, we propose a network-aware multi-
criteria container scheduler to jointly process containers and
network requirements. We introduce a new Mixed Integer
Linear Programming formulation for network-aware scheduling
encompassing both tenants and providers metrics. We describe
two GPU-accelerated modules to address the complexity barrier
of the problem and efficiently process scheduling requests. Our
experiments show that our scheduling approach accounting for
both network and containers outperforms traditional algorithms
used by containers orchestrators.

I. INTRODUCTION

Container-based virtualization offers a lightweight mecha-
nism to host and manage large-scale distributed applications
for big data processing, edge computing, stream processing,
among others. Multiple tenants encapsulate applications’ envi-
ronments in containers, abstracting away details of operating
systems, library versions, and server configurations. With con-
tainers, data center (DC) management becomes application-
oriented [1] in contrast to server-oriented when using virtual
machines. Several technologies are used to provide connec-
tions between containers, such as virtual switches, bridges, and
overlay networks [2]. Yet, containers are a catalyst for network
management complexity. Network segmentation, bandwidth
reservation, and latency control are essential requirements to
support distributed applications, but container management
frameworks still lack appropriate tools to support Quality-of-
Service (QoS) requirements for network provisioning [1].

We argue that container networking must address at least
three communication scenarios, despite the orchestration
framework used by the DC: highly-coupled container-to-
container communication, group-to-group communication, and
containers-to-service communication. Google’s Kubernetes of-
fers a viable solution to group network-intensive or highly
coupled containers, by using pods. A pod is a group of one
or more containers with shared storage and network, and
pods must be provisioned on a single host. Because the host
bus conducts all data transfers within a pod, communication
latency is more constant, increasing the network through-
put, achieving values superior to default network switching
technologies. However, for large-scale distributed applications,

multiple pods must be provisioned and eventually allocated on
distinct servers.

This paper advances the field on network-aware container
scheduling, a primary management task on container-based
DCs [1], by jointly allocating compute and communication
resources to host network-aware requests. The network-aware
scheduling is analogous to the virtual network embedding
(VNE) problem [3]. Given two graphs, the first one rep-
resenting user requested containers and all corresponding
communications requirements, and the second denoting the
DC hosting candidates (servers, virtual machines, links, and
paths), one must find a map for each vertex and edge from
the request graph to a corresponding vertex and edge on DC
graph. Vertices and edges carry weights representing process
and bandwidth and constraints. The combined scheduling of
containers and network QoS requires a multi-criteria decision,
based on conflicting constraints and objectives.

We formally define in this paper the scheduling problem
encompassing the network QoS as a Mixed Integer Linear
Programming (MILP). We later propose two Graphics Pro-
cessing Unit (GPU)-accelerated multi-criteria algorithms to
process large-scale requests and DC topologies.

The paper is organized as follows. §II describes the problem
formulation, while §III defines an optimal MILP for joint con-
tainer and network QoS requirements allocation. Following,
§IV presents the evaluation of the proposed MILP highlight-
ing the efficiency and limitations of network-aware schedul-
ing. Then, §V describes the implementation of two GPU-
accelerated algorithms to speed up the scheduling process, and
both algorithms are compared with traditional approaches in
§VI. Related work is reviewed in §VII and §VIII concludes.

II. PROBLEM FORMULATION

A. DC Resources and Tenants Requests

Data center resources (bare metal or virtualized) are rep-
resented by Gs(Ns, Es), where Ns denotes the physical
servers, and Es contains all physical links composing the
network topology. A vector is associated with each phys-
ical server u ∈ Ns, representing the available capacities
(csu[r]; r ∈ R) where R denotes resources as RAM and CPU.
In addition, bws

uv represents the available bandwidth between
physical servers u and v. Thus, a tenant request is given
by Req(N c, Ec), with N c being a set of containers and Ec

Notation Description
Gs(Ns, Es) DC graph composed of Ns servers and Es links.

csu[r] Resource capacity vector of server u ∈ Ns.

P s All direct paths (physical and logical) on DC topology.

bws
uv Bandwidth capacity between servers u and v, uv ∈ Es.

Req(Nc, Ec) Request, composed of Nc containers and Ec links.

cmin
i [r], cmax

i [r]
Minimum and maximum resources capacities for con-
tainer i ∈ Nc.

bwmin
ij , bwmax

ij

Minimum and maximum bandwidth requirement between
containers i and j, ij ∈ Ec.

podg ⊂ Nc Set of containers i ∈ Nc composing a pod g ∈ G.

TABLE I
NOTATION USED ALONG THIS PAPER: i AND j ARE USED FOR INDEXING

CONTAINERS, WHILE u AND v ARE USED FOR DC SERVERS.

the communication requirements among them. Also, as in
Kubernetes, each container is associated with a pod.

Containers from a pod must be hosted by the same physical
server (sharing the IP address and port space). A group of
pods G is defined in a tenant’s request, and a container
i ∈ N c is connected to a pod group g ∈ G, indicated by
i ∈ podg . Instead of requesting a fixed configuration for
each QoS requirement, containers are specified as minimum
and maximum intervals. For a container i, the minimum and
maximum values for any r ∈ R are respectively defined
as cmin

i [r] and cmax
i [r]. The same rationale is applied to

containers interconnections (Ec): minimum and maximum
bandwidth requirements are given by bwmin

ij and bwmax
ij .

A container orchestration framework has to determine
whether to accept or not a tenant request. The allocation of
containers onto a DC is decomposed into nodes and links
assignments. The mapping of containers onto nodes is given by
Mc : N c 7→ Ns, while the mapping of networking links be-
tween containers onto paths is represented as Mec : E

c 7→ P s.
Table I summarizes the notation used is this paper.

B. Objectives

Energy consumption. To reduce energy consumption, we
pack containers in as few nodes as possible, allowing to power
off the unused ones. We call this technique consolidation, and
we reach it by minimizing the DC fragmentation, defined
as the ratio of the number of active servers (e.g., those
hosting containers) to the total number of DC resources. Server
fragmentation is given by F(Ns) = |Ns′ |/|Ns|, while the
same rationale is applied for links, F(Es) = |Es′ |/|Es|,
where |Ns′ | and |Es′ | denote the number of active servers
and links, respectively.
Quality-of-Service. A container can be successfully executed
with any capacities configuration in the intervals specified as
minimum and maximum. However, optimal performance is
reached when the maximum values are used. In this sense, util-
ity functions can be applied for representing the improvement
on container’s configuration. In short, the goal is to maximize
Eq. (1) and (2) for each container i ∈ N c, where caiu[r] and
bwa

ijuv represent the capacity effectively allocated for vertices
and edges, respectively.

U(i) =

∑
r∈R

caiu[r]

cmax
i [r]

|R| ;u = Mc(i) (1)

U(ij) =
∑

uv∈Me(ij)
bwa

ijuv

bwmax
ij

(2)

III. OPTIMAL MILP FOR JOINT CONTAINER AND
NETWORK QOS ALLOCATION

A. Variables and Objective Function

A set of variables (Table II) are proposed to find a solution
for joint allocation of containers and bandwidth requirements,
as well as to achieve maps Mc : N c 7→ Ns, and Mec :
Ec 7→ P s. The binary variable xiu accounts the mapping of
containers on servers. The containers’ connectivity (xlijuv)
applies the same rationale. For identifying the amount of
resources allocated to a container i ∈ N c, the float vector cai
is introduced. Bandwidth allocation follows the same principle
and is accounted by float variable bwa

ij .

Notation Type Description
xiu Bool Container i ∈ Nc is mapped on server u ∈ Ns.

xlijuv Bool Connection ij ∈ Ec is mapped on link uv ∈ ES .

caiu[r] Float Resource (r ∈ R) capacity vector allocated to
container i ∈ Nc on server u ∈ Ns.

bwa
ijuv Float Bandwidth allocated to connection ij ∈ Ec on

link uv ∈ Es.

fu Bool Server u ∈ Ns is hosting at least one container.

fluv Bool Link uv ∈ Es is hosting at least one connection.

TABLE II
MILP VARIABLES FOR MAPPING CONTAINERS AND VIRTUAL LINKS ATOP

A MULTI-TENANT DC.

The objectives (§II-B) are reached by the minimization of
Eq. (3). Two additional binary variables are used to identify
if DC resources are hosting at least one container or link, fu
and fluv . Value 1 is set just for active servers, as given by
fu ≥

∑
i∈Nc xiu

|Nc| ;∀u ∈ Ns. Physical links follow the same

idea, fluv ≥
∑

ij∈Ec xlijuv

|Ec| ;∀uv ∈ Es. Finally, the importance
level of each term is defined by setting α.

minimize : α

(∑
i∈Nc

(1 − U(i)) +
∑

ij∈Ec

(1 − U(ij))

)

+(1 − α)

(∑
u∈Ns

fu

|Ns|
+

∑
uv∈Es

fluv

|Es|

)
(3)

B. Constraints

DC Capacity, QoS Constraints and Integrity of Pods. A
DC server u ∈ Ns must support all hosted containers, as
indicated by Eq. (4), while the bandwidth of link uv ∈ Es

must support all containers transfers allocated to it, as given
by Eq. (5). Eq. (6) guarantees the allocation of a resources
capacities from min-max intervals for a containers i ∈ N c.
The same rationale is applied for ij ∈ Ec on Eq. (7).

csu[r] ≥
∑
i∈Nc

caiu[r];∀u ∈ Ns;∀r ∈ R (4)

bws
uv ≥

∑
ij∈Ec

bwa
ijuv; ∀uv ∈ Es (5)

cmin
i [r]× xiu ≤ caiu[r] ≤ cmax

i [r]× xiu

∀i ∈ Nc;∀u ∈ Ns;∀r ∈ R (6)
bwmin

ij × xlijuv ≤ bwa
ijuv ≤ bwmax

ij × xlijuv

∀ij ∈ Ec;uv ∈ Es (7)
xiu = xju; ∀g ∈ G; ∀i, j ∈ podg; ∀u ∈ Ns (8)

Finally, containers are optionally organized in pods. For
guaranteeing the integrity of pods specifications, Eq. (8)
indicates that all resources from a pod (i, j ∈ podg) must
be hosted by the same server (u ∈ Ns).
Binary and Allocation Constraints. A container must be
hosted by a single server (

∑
u∈Ns xiu = 1; ∀i ∈ N c), while

each virtual connectivity between containers is mapped to a
path between resources hosting its source and destination as
given by

∑
v∈Ns xlijvu +

∑
v∈Ns xlijuv = xiu + xju;∀u ∈

Ns;∀ij ∈ Ec. However, on large scale DC topologies, servers
are interconnected by multiple paths composed of at least one
switch hop. In order to keep the model realistic with current
DCs, we rely on network management techniques, such as
SDN [4] to control the physical links usage and populate the
Es with updated information and available paths.

IV. EVALUATION OF THE OPTIMAL MILP FOR
NETWORK-AWARE CONTAINERS SCHEDULING

The MILP scheduler and a discrete event simulator were
implemented in Python 2.7.10 using CPLEX optimizer
(v12.6.1.0). For composing the baseline was used the native
algorithms offered by containers orchestrators, Best Fit (BF)
(binpacking) and Worst Fit (WF) (spread). As BF and WF
natively ignore the network requirements, we included a
shortest-path search after the allocation of servers to host
containers for conducting a fair comparison.

A. Metrics and MILP Parametrization

The MILP objective function, Eq. (3), is composed of terms
to represent the tenant’s perspective (the utility of network
allocation and the queue waiting time) and the DC fragmenta-
tion (the provider’s perspective). Although a minimum value
is requested for each container parameter, the optimal utility
function expects the allocation of maximum values (U(.) = 1).
The MILP-based scheduler is guided by the α value to define
the importance of each term composing the objective function.
For demonstrating the impact of defining α, we evaluated 3
configurations α = 0; 0.5; 1. Configurations with α = 0 and
α = 1 define the baseline for comparisons: by setting α = 0
the MILP optimizes the problem regarding the fragmentation
perspective only, while α = 1 represents the opposite; more
importance is given to containers and network utilities.

B. Experimental Scenarios

1) DC Configuration: A Clos-based topology (termed Fat-
Tree) is used to represent the DC [5], [6]. The k factor guides
the topology indicating the number of switches, links, and
hosts used to compose the DC. A fat-tree build with k-port
switches supports up to k3/4 servers. The DC is configured
with k = 4, and composed of homogeneous servers equipped
with 24 cores and 256 GB RAM, while the bandwidth capacity
for all links is defined as 1 Gbps.

2) Requests: A total of 200 requests is submitted with
resources specifications based on uniform distributions for
containers capacities, submission time, and duration. Each
request is composed of 5 containers with a running time up
to 200 events from a complete execution of 500 events. For
composing the pods, up to 50% of containers from a single
requested are grouped in pods. For the network, the bandwidth
requirement between a pair of containers is configured up to 50
Mbps, besides requests with 1 Mbps requirement representing
applications without burdensome network requirements. The
values for CPU and RAM configuration are uniformly dis-
tributed up to 2 and 4, respectively.

C. Results and Discussion

Table III and Figures 1 and 2 present results for utility of
network and container requests, provisioning delays, and DC
network fragmentation, respectively.

BF and WF algorithms have a well-defined pattern for
all network utility metric. For requests with low network
requirements (up to 1Mbps), both algorithms tend to allocate
the maximum requested value for network QoS. An exception
is observed for BF with network-intensive requests (up to
50Mbps) as the algorithm gives priority to minimum requested
values for consolidating requests on DC resources. With re-
garding the network-aware MILP scheduler, even for requests
with α = 0 focusing on decreasing the DC fragmentation,
the scheduler allocated maximum values for network requests,
following the BF and WF algorithms. However, the impact
of α parametrization is perceived for network-intensive re-
quests. The MILP configuration with α = 0.5 shows that
the algorithm can jointly consider requests utility and DC
fragmentation. The results in Fig. 2 show that scheduling

Algorithm α Bandwidth U(ij) U(i)

MILP

0 1 Mbps 22.68% 99.90%
50 Mbps 7.86% 66.29%

0.5 1 Mbps 26.78% 99.90%
50 Mbps 86.67% 97.21%

1 1 Mbps 38.28% 99.90%
50 Mbps 93.56% 97.80%

WF - 1 Mbps 100% 98.03%
50 Mbps 100% 99.98%

BF - 1 Mbps 100% 97.20%
50 Mbps 100% 99.46%

TABLE III
LINK AND CONTAINER UTILITIES FOR MILP, BF, AND WF.

Fig. 1. Requests delay when executing the MILP-based scheduler.

Fig. 2. DC network fragmentation when executing the MILP-based scheduler.

network-intensive requests increases the network DC fragmen-
tation. The provisioning delays (Figure 1) explain this fact: the
MILP scheduler decreases the queue waiting time for network-
intensive requests when compared to BF and WF.

In summary, it is evident that network QoS must be consid-
ered by the scheduler to decrease the queue waiting time and to
reserve utility’s dynamic configurations. Moreover, the results
obtained from MILP configured with α = 0.5 demonstrated
the real trade-off between fragmentation and utility, or in other
words, provider’s and tenant’s perspectives.

V. GPU-ACCELERATED HEURISTICS

Although MILP is efficient to model and highlights the
impact of network-aware scheduling, solving this problem is
known to be computationally intractable [3] and practically
infeasible for large-scale scenarios. Therefore, we developed
two GPU-accelerated multi-criteria algorithms to speed up the
joint scheduling of containers and network with QoS require-
ments. We selected two multi-criteria algorithms: Analytic
Hierarchy Process (AHP) and Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS), chosen due to their
multidimensional analysis, being able to work with several
servers simultaneously. Also, AHP and TOPSIS provide a
structured method to decompose the problem and to consider
trade-offs in conflicting criteria. Following the notation used to
express the MILP (Table I), both algorithms analyze the same
set of criteria csu for a given server u. In addition, the sum of
all bandwidth capacity bws

uv with source on u (given by bws
u)

and the current server fragmentation (fu) are accounted and
included on csu capacity vector. The multi-criteria algorithms
analyzed all variables described in Section II-B as attributes.

A. Weights Distribution

AHP and TOPSIS algorithms are guided by a weighting
vector to define the importance of each criteria. While the
MILP has α to indicate the importance level of each term in the
objective function, the multi-criteria function decomposes α
into a vector W = {α0, α1, ...α|R|−1};

∑
i∈R αi = 1. Tab. IV

presents different W compositions to the MILP objective.

Scenario CPU RAM Fragmentation Bandwidth
Flat 0.25 0.25 0.25 0.25

Clustering 0.17 0.17 0.5 0.16

Network 0.17 0.17 0.16 0.5

TABLE IV
WEIGHTING SCHEMA FOR AHP AND TOPSIS. THE FLAT CONFIGURATION

IS EQUIVALENT TO α = 0.5 IN MILP, WHILE CLUSTERING AND
NETWORK REPRESENTS α = 0 AND α = 1, RESPECTIVELY.

The multi-criteria analysis with clustering configuration
optimizes the problem aiming at DC consolidation (equivalent
to α = 0 on MILP formulation) through the definition of high
importance level (50%) to fragmentation criteria, while the
other criteria share equally the last 50%. In other hand, the
execution with network configuration (α = 1 from MILP for-
mulation), the bandwidth criteria receive a higher importance
level (50%) while the other criteria share equally the last 50%.
This configuration makes the scheduler select servers that have
the highest residual bandwidth. Finally, the flat configuration
sets the same importance weight for all criteria (following the
α = 0.5 rationale on MILP).

B. AHP

The AHP is a multi-criteria algorithm that hierarchically
decomposes the problem to reduce the complexity, and per-
forms a pairwise comparison to rank all alternatives [7]. In
short, the hierarchical organization is composed of three main
levels. The objective of the problem is configured at the top of
the hierarchy, while the set of criteria is placed in the second
level, and finally, in the third level represents all the viable
alternatives to solve the problem.

In our context, the selection of the most suitable DC to host
a container is performed in steps. In the first step two vectors
(M1 and M2) are built combining all criteria and alternatives
(second and third level of AHP hierarchy) applying the weights
defined in Table IV. In other words, M1[v] = W [v];∀v ∈ R
while M2[v × |Ns| + u] = csu[v]; ∀u ∈ Ns;∀v ∈ R. The
representation based on a vector was chosen to exploit the
Single Instruction Multiple Data (SIMD) GPU-parallelism.
Later the pairwise comparison is applied for all elements
into the hierarchy. If M1[v × |R| + u] > 0, the value
M1[v×|R|+u]−M1[i×|R|+u] is attributed to; In addition,
if the cell value is < 0, 1

M1[v×|R|+u]−M1[i×|R|+u] is set; and 1
otherwise. The same rationale is applied for M2, indexed by
v× |Ns|2 + i× |Ns|+ u. Later, both vectors are normalized.
At this point, the algorithm calculates the local rank of each
element in the hierarchy (L1 and L2), as described in Eqs. (9)
and (10), ∀u, v ∈ R;∀i, j ∈ Ns. Finally, the global priority
(PG) of the alternatives is accounted to guide the host selec-
tion, as given by PG[v] =

∑
x∈Ns P1[v]× P2[v × |Ns|+ x].

L1[v × |R|+ u] =

∑
x∈R M1[v × |R|+ x]

|R| (9)

L2[v × |Ns|+ j] =

∑
x∈Ns M2[v × |Ns|2 + i× |Ns|+ x]

|Ns| (10)

C. TOPSIS

The Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) is based in the shortest Euclidean Distance
from the alternative to the ideal solution [8]. The benefits of
this algorithm are three-fold: (i) can handle a large number
of criteria and alternatives; (ii) requires a small number of
qualitative inputs when compared to AHP; and (iii) is a com-
pensatory method, allowing the analysis of trade-off criteria.

The ranking of the DC candidates is performed in steps.
Initially, the evaluation vector M correlates DC resources
(Ns) and the criteria elements (R): M [v × |Ns| + u] =
csu[v]; ∀u ∈ Ns;∀v ∈ R, which is later normalized. The next
step is the application of weighting schema on M values:
M [v×|Ns|+u] = M [v×|Ns|+u]×W [v]; ∀u ∈ Ns;∀v ∈ R.
Based on M , two vectors are them composed with the maxi-
mum and minimum values for each criteria, represented by A+

(the upper-bound solution quality) and A− (the lower-bound).
TOPSIS requires the calculation of Euclidean distances be-
tween M and upper- and lower-bounds, composing Ed+ and
Ed−. Finally, a closeness coefficient array is accounted for
all DC servers, Rank[u] = Ed−[u]

Ed+[u]+Ed−[u] ;∀u = Ns, and
afterwards the resulting array is sorted on decreasing order,
indicating the selected candidates.

D. GPU Implementation

The AHP and TOPSIS are decomposed in GPU-tailored
kernels following a pipeline execution. The first kernel is in
charge is acquiring DC and network-aware containers requests,
while the remaining kernels perform the comparisons using the
parallel reduction technique. A special explanation is required
for selecting physical paths to host containers interconnections.
After the selection of the most suitable server for each pod
presented in the tenant’s request, the virtual links between
the containers must be set. A modified Dijkstra algorithm
is used to compute the shortest path that has the maximum
available bandwidth between the hosting servers. The modified
Dijkstra is implemented as a single kernel to allow multiple
executions, where each thread calculates a different source and
destination pair. As the links between every two nodes in the
DC are undirected, the GPU implementation uses a specific
array representation to reduce the total space needed. The main
principle of the data structure of this algorithm is that u < v
where u is the source and v the destination, and the paths
u → v and v → u are the same.

VI. EVALUATION OF GPU-ACCELERATED HEURISTICS

The GPU-accelerated scheduler and a discrete event simu-
lator were implemented in C++, using GCC compiler v.8.2.1
and CUDA framework v.10.1.

A. Experimental Scenarios

The evaluation considers a DC composed of of homoge-
neous servers equipped with 24 cores, 256 GB RAM and
interconnected by a Fat-Tree topology (k = 20) and bandwidth
capacity of 1 Gbps for all links. A total of 6000 requests were
submitted to be scheduled, each composed of 4 containers with

a running time up to 250 events from a complete execution
of 500 events. For composing the requests, up to 50% of
containers from a single request are grouped in pods, while
the bandwidth requirement between a pair of containers is
configured up to 50 Mbps (a heavy network requirement).

B. Results and Discussion

Results are summarized by Table V and Figures 3 and 4,
showing data for the runtime, utility of network and container
requests, provisioning delays correlated to the DC fragmenta-
tion and DC network fragmentation, respectively.

Algorithm Scenario # Events Average Runtime (s) U(ij) U(i)

BF - 2462 79.38 100% 96.89%

WF - 1007 47.80 100% 99.41%

AHP
Flat 949 9.45 100% 98.22%

Clustering 936 7.51 100% 99.10%

Network 928 6.90 100% 98.41%

Topsis
Flat 894 3.67 100% 98.85%

Clustering 916 3.84 100% 99.01%

Network 892 3.48 100% 98.94%

TABLE V
RUNTIME, LINK AND CONTAINER UTILITIES FOR BF, WF, AHP AND

TOPSIS.

Fig. 3. DC network fragmentation from the GPU-accelerated scheduler.

Fig. 4. DC links fragmentation from the GPU-accelerated scheduler.

Figure 3 shows that the multi-criteria algorithms have a
small variation for request delay, grouping the data in high
fragmentation percentages, while the WF induces delay in
requests regardless the DC fragmentation. In turn, the BF
algorithm imposes higher delay to requests resulting in a small
fragmentation percentage, below 30% of network fragmenta-
tion. WF and BF generate a long requests queue impacting
directly in the total computational time needed to schedule all
the tenants’ requests.

Regarding the container’s utility (Table V), the multi-criteria
algorithms give priority to schedule requests mixing between
the maximum and minimum requirements, increasing the
number of containers in the DC. The WF tends to allocate
the maximum value for the requests, while the BF tends to

give the minimum values of the requests. While the multi-
criteria algorithms increase the number of containers in the
DC reducing the total delay, the network fragmentation have
similar behavior with the WF algorithm, as shown in Figure 4.
Meanwhile the BF keeps the network fragmentation small
due to the long delays that it applies in the requests. It is
possible to observe that the multi-criteria algorithms present
better consolidation results when compared to the WF and BF
algorithms, due to their capacity to allocate more requests in
the DC keeping the fragmentation similar to WF. It is possible
to conclude that the network weighting schema is essential to
perform a joint scheduling of container and network require-
ments. It is important to emphasize: the GPU-accelerated algo-
rithms can schedule the requests with bandwidth requirements
atop a large-scale DC in a few seconds. Specifically, TOPSIS
outperformed BF, WF, and AHP results.

VII. RELATED WORK

The orchestration and scheduling of virtualized DC is a
trendy topic of the specialized literature. MILP techniques of-
fer optimal solutions which are generally used as a baseline for
comparisons [4], but the problem complexity and search space
often create opportunities for heuristic-based solutions [3].

Guerrero [9] proposed a scheduler for container-based
micro-services. The containers workload and the networking
details were analyzed to perform the DC load balance. Guo
[10] proposed a scheduler to optimize the load balancing and
workload through the neighborhood division in a micro-service
method. Both proposals were analyzed on small-scale DCs as
the problem complexity imposes a barrier on real-scale use.
The GenPack [11] scheduler employs monitoring information
to define the appropriated group of a container based on the
resource usage, avoiding resources disputes among containers.
A security-concerned scheduler was proposed by [12], based
on bin-packing executing a BF approach. GPU-accelerated
algorithms can be applied to speed-up these heuristics reaching
large-scale DCs [13].

A joint scheduler based on priority-queue, AHP and Particle
Swarm Optimization (PSO) is proposed by [14]. The requests
are sorted by their priority level and waiting time, and then
the tasks are sent to the AHP to be ranked and then serving as
an input to PSO. The results show a reduction on makespan
up to 15% when compared to PSO. In addition, [15] proposed
a VM scheduler based on TOPSIS and PSO. The scheduler
was compared with 5 meta-heuristics using the 4 metrics:
makespan, transmission time, cost and resource utilization,
achieving an improvement up to 75% when compared to
traditional schedulers. Although many multi-criteria solutions
appear in the literature, we were unable to find schedulers
dealing with containers, pods, and their virtual networks.

Network requirements are disregarded or partially attended
by major of reviewed schedulers. Even well-known orches-
trators (e.g., Kubernetes) consider the network as second-level
and not critical parameters. Containers are used to model large-
scale distributed applications, and it is evident that network
allocation can impact on applications performance [2].

VIII. CONCLUSION

We investigated the joint scheduling of network QoS and
containers on multi-tenant DCs. A MILP formulation and ex-
perimental analysis reveal that a network-aware scheduler can
decrease DC network fragmentation and processing delays.
However, solving a MILP is known to be computationally
intractable and practically infeasible for large-scale scenarios.
We then developed two GPU-accelerated multi-criteria algo-
rithms, AHP and TOPSIS, to schedule requests on a large-scale
DC. Both network-aware algorithms outperformed the tradi-
tional schedulers with regard to DC and tenant perspectives.
Future work includes the scheduling of batch requests and a
distributed implementation for increasing the fault tolerance.
Acknowledgments. The research leading to the results pre-
sented here has received funding from UDESC, FAPESC, and
the European Union’s Horizon 2020 research and innovation
programme under the LEGaTO Project (legato-project.eu),
grant agreement No 780681.

REFERENCES

[1] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Queue, vol. 14, no. 1, pp. 10:70–10:93, 2016.

[2] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical
study of container networks,” in IEEE INFOCOM 2018-IEEE Conf. on
Computer Communications. IEEE, 2018, pp. 189–197.

[3] M. Rost, E. Döhne, and S. Schmid, “Parametrized complexity of virtual
network embeddings: Dynamic & linear programming approximations,”
SIGCOMM Comput. Commun. Rev., vol. 49, no. 1, pp. 3–10, Feb. 2019.

[4] F. R. de Souza, C. C. Miers, A. Fiorese, M. D. de Assunção, and
G. P. Koslovski, “Qvia-sdn: Towards qos-aware virtual infrastructure
allocation on sdn-based clouds,” Journal of Grid Computing, Mar 2019.

[5] S. Arjun, O. Joon, A. Amit, A. Glen, A. Ashby, B. Roy et al., “Jupiter
rising: A decade of clos topologies and centralized control in google’s
datacenter network,” in Sigcomm ’15, 2015.

[6] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri
et al., “Portland: A scalable fault-tolerant layer 2 data center network
fabric,” SIGCOMM Comput. Commun. Rev., vol. 39, pp. 39–50, 2009.

[7] T. L. Saaty, “Making and validating complex decisions with the
AHP/ANP,” J SYST SCI SYST ENG, vol. 14, no. 1, pp. 1–36, 2005.

[8] C.-L. Hwang and K. Yoon, Multiple Attribute Decision Making. Lecture
Notes in Economics and Mathematical Systems, Springer, 1981.

[9] C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-objective
optimization of container allocation in cloud architecture,” J GRID
COMPUT, vol. 16, no. 1, pp. 113–135, Mar 2018.

[10] Y. Guo and W. Yao, “A container scheduling strategy based on neigh-
borhood division in micro service,” in NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symp. IEEE, 2018, pp. 1–6.

[11] A. Havet, V. Schiavoni, P. Felber, M. Colmant, R. Rouvoy, and C. Fetzer,
“Genpack: A generational scheduler for cloud data centers,” in IEEE Int.
Conf. on Cloud Engineering (IC2E), April 2017, pp. 95–104.

[12] S. Vaucher, R. Pires, P. Felber, M. Pasin, V. Schiavoni, and C. Fetzer,
“SGX-aware container orchestration for heterogeneous clusters,” in
IEEE 38th Int. Conf. on Distributed Comp. Systems, July 2018.

[13] L. L. Nesi, M. A. Pillon, M. D. de Assunção, C. C. Miers, and
G. P. Koslovski, “Tackling virtual infrastructure allocation in cloud
data centers: a gpu-accelerated framework,” in 2018 14th Int. Conf. on
Network and Service Management (CNSM), Nov 2018, pp. 191–197.

[14] H. B. Alla, S. B. Alla, A. Ezzati, and A. Touhafi, “An efficient dynamic
priority-queue algorithm based on ahp and pso for task scheduling in
cloud computing,” in HIS. Springer, 2016, pp. 134–143.

[15] N. Panwar, S. Negi, M. M. S. Rauthan, and K. S. Vaisla, “Topsis–pso
inspired non-preemptive tasks scheduling algorithm in cloud environ-
ment,” Cluster Computing, pp. 1–18.

