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Abstract: Grid computing platforms dissipate massive amounts of energy. Energy efficiency, 
therefore, is an essential requirement that directly affects its sustainability. Resource management 
systems deploy rule-based approaches to mitigate this cost. However, these strategies do not 
consider the patterns of the workloads being executed. In this context, we demonstrate how a 
solution based on Deep Reinforcement Learning is used to formulate an adaptive power-efficient 
policy. Specifically, we implement an off-reservation approach to overcome the disadvantages of 
an aggressive shutdown policy and minimise the frequency of shutdown events. Through 
simulation, we train the algorithm and evaluate it against commonly used shutdown policies 
using real traces from GRID’5000. Based on the experiments, we observed a reduction of 46% 
on the averaged energy waste with an equivalent frequency of shutdown events compared to a 
soft shutdown policy.  
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1 Introduction 

Grid computing provides massive on-demand computing 
power by sharing resources among multiple geographically 
distributed institutions. Virtual organisation groups allow 
sharing, discovery and allocation of computing resources 
among providers and consumers. Not surprisingly, grids 
became a popular solution to handle intensive parallel 
applications and large-scale scientific experiments (Foster et 
al., 2008; Primet et al., 2009). 

Sharing resources to constitute large-scale platforms is an 
appealing and affordable choice to increase the number of 
resources available to a given application. By adding more 
providers, a grid platform can easily range from a few 
hundred (e.g., DAS-4 Overview (n.d.)) to thousands of CPU 
cores (e.g., GRID’5000 (Bolze et al., 2006)). Such paradigm 
allows users to scale up their applications to solve more 
complex problems, but at a price (Galizia and Quarati, 2012). 
The energy consumption increases almost linearly with 
resource utilisation. Taking into consideration the size of the 
platform, such consumption can easily become unfeasible if 
not tackled (Sun et al., 2015). For example, operating a 
thousand processors fluctuating from 95 W at idle to more 
than 200 W under stress leads to a power consumption of 95 
to 200 kW (Poquet, 2017, p.68). Even not considering the 
environmental impact and the costs with cooling, there is a 
non-negligible financial cost associated to just keeping such 
platform powered on. In this way, power bills have become a 
significant expense that affects the sustainability of the 
infrastructure (Dayarathna et al., 2016). Therefore, energy-
efficient strategies are one of the main interests of system 
administrators and providers (Hinz et al., 2018; Tarplee et al., 
2016). 

Achieving better energy efficiency not only depends on 
the choice of efficient hardware but also on the management  

strategies deployed on different levels of the platform 
(Nesmachnow et al., 2013; Orgerie et al., 2014). As an 
example, the energy consumed by underutilised servers 
(called nodes) can be minimised by deploying DVFS 
techniques at the job level. Such technique can scale down 
the processor frequency based on its usage pattern to allow 
energy savings when jobs are not executing computation 
intensive tasks (Huang and Feng, 2009; Young et al., 2013). 
At the scheduler level, power capping or energy budget 
techniques can be used to keep the energy consumption under 
a threshold by limiting the usage of the platform (Borghesi et 
al., 2015). In addition, energy-aware job scheduling policies 
can be adopted to improve the energy efficiency using multi-
constraint objectives (Shi et al., 2017). At platform level, 
shutdown techniques use the time between jobs to minimise 
the number of idle nodes. Idle nodes consume a considerable 
amount of energy, therefore simply turning them off leads to 
potential energy savings (Benoit et al., 2018; Hikita et al., 
2008; Raïs et al., 2016; Terzopoulos and Karatza, 2013). 

Energy minimisation has been vastly studied through the 
years and there are plenty of different DPM strategies 
available. Among the most popular, shutdown is one of the 
most promising solutions due to its expected higher impact on 
energy efficiency (Bates et al., 2015). Shutdown strategies 
turn off nodes that are idle for a time, therefore consuming 
considerably less energy than powered on but idle nodes. 
Moreover, there are no gains on keeping nodes powered on if 
they are not going to be used for a long time. Keeping these 
nodes on only wastes energy while neither serving providers 
nor users needs. Such assumption would enforce the adoption 
of an aggressive shutdown policy, turning off nodes 
immediately after they become idle. However, in some 
situations aggressive policies are not the best solution 
(Orgerie et al., 2008). 
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Identifying the moments to turn off nodes depends on the 
workload and on the infrastructure of the platform. For 
example, if a node takes 5 minutes to shutdown, 10 minutes 
to wake up, and the job arrival time is less than or equal to 15 
minutes, there is no benefit in using an aggressive shutdown 
policy because the node keeps switching between states most 
of the time. Moreover, the energy consumed while switching 
can be higher than if it just stayed idle. To overcome this 
situation, one must consider the peculiarities of each system 
(Liu et al., 2017; Raïs et al., 2018). However, using historical 
data is not a straightforward task due to the dynamicity of 
grid systems and workloads. Consequently, the solutions 
typically involve using simple but scalable rule-based policies 
that are not based on workload patterns. Applying the same 
set of rules on systems with different infrastructures  
and usage patterns leads to an underoptimised setup  
(Legrand et al., 2019). Adaptive strategies address this issue 
(Kintsakis et al., 2019; Orhean et al., 2018). 

Regarding adaptive control, RL introduces methods in 
which an agent can learn a policy through a trial and error 
procedure. The agent starts with no knowledge. At each 
interaction with the environment the agent receives a stimulus 
(called reward) based on the quality of its decision. This is 
based on the common sense notion that if one chooses an 
action that is followed by a satisfactory state, then the 
tendency to execute that same action should be reinforced. As 
the number of interactions goes to infinity, the agent tries to 
learn a policy that maximises its expected (sometimes 
discounted) future reward (Sutton et al., 1992). This capacity 
makes RL a possible solution to dynamically adapt the policy 
to distinct scenarios, but it has some limitations that may 
prevent it from learning optimal policies on problems with 
large state spaces. Due to the complex nature of a grid 
system, such strategy may not fit without manual work on the 
reduction of the problem scope (Orhean et al., 2018). In such 
cases, DRL techniques that join RL with DL are able to 
approximate a solution (Mnih et al., 2015). 

In this context, we propose a novel server  
shutdown strategy based on DRL named DeepShutdown. 
DeepShutdown operates at the platform level along with the 
scheduling policy to determine when nodes must be turned off 
and for how long they must be kept in that state. We use an OR 
approach that works similar to a load consolidation algorithm, 
but that reserves a subset of nodes to itself. Nodes reserved 
cannot be used by the job scheduler, which will consequently 
concentrate the queue load on the remaining nodes. In this way, 
it’s possible to save energy while minimising the number of 
On-Off cycles by adapting the number of available nodes. 
DeepShutdown exploits the workload to learn the moments 
when it worth to increase/decrease the nodes available for 
scheduling the grid jobs in order to save energy by 
concentrating the load on fewer nodes. We relax the 
assumption that a job must execute as soon as possible and give 
the algorithm a upper bound limit on the waiting time for each 
job. DeepShutdown is allowed to delay some jobs up some 
point if the energy economy pays off. 

By considering the peculiarities of each workload and 
allowing the extra delay in the start of some jobs, we achieve 
considerable energy savings. Moreover, although some 
arguments discourages prediction methods for servers 

shutdown (Raïs et al., 2016) we demonstrate how it can be 
successfully employed to achieve better results than pure 
shutdown policies. In order to validate this, we conduct 
several simulations using real workload traces from the 
GRID’5000 testbed (Bolze et al., 2006) and we estimate the 
impact of the workload on different shutdown techniques. 
From the results, we observe an average increase of 11.7% on 
energy savings with 17.9% less shutdown events in 
comparison to an aggressive shutdown policy. By comparing 
it with a soft policy, the savings achieved by DeepShutdown 
increases up to 46% on average while the number of 
shutdown events increases only 4%. 

In short, the main contributions of our work are: 

 We address the influence of job submission pattern and 
job failures on a rule-based shutdown policy by 
analysing the GRID’5000 traces.  

 We demonstrate how an OR technique can explore 
workload properties to improve shutdown-based policies.  

 We demonstrate how the shutdown problem can be 
modelled into a MDP and used to learn a policy through 
state-of-the-art DRL techniques.  

 We present a shutdown strategy that can adapt to the 
usage pattern of the platform and we conduct several 
experiments to evaluate this adaptability.  

 We show how DRL can be used to optimise the grid 
resource and jobs management.  

 We extend Batsim (Dutot et al., 2015) to deal with the 
peculiarities of DRL techniques by joining it with 
OpenAi Gym (Brockman et al., 2016). This integration 
(named GridGym) provides a series of ready-to-use 
environments that deal with problems commonly faced 
by resource management systems.  

The rest of this paper is organised as follows. Section 2 
details the motivation and describes the GRID’5000 traces. 
Section 3 explains the models and formal notation. Section 4 
details DeepShutdown and the MDP formulation. Section 5 
describes the simulation environment and presents the results. 
Section 6 discusses the policy learned by the DeepShutdown. 
Section 7 presents related work. Finally, Section 8 concludes 
this work and presents future directions. 

2 Motivation and problem definition 

This section presents the motivation behind our work. We 
highlight the disadvantages of pure shutdown policies and we 
explore alternatives that could be considered. We support our 
claims by analysing a set of GRID’5000 traces. 

2.1 Disadvantages of pure shutdown policies 

The power consumption of idle resources has a significant 
impact in the overall energy consumed by a computing 
platform. To overcome this situation, a common choice is to 
turn off resources after an idle period of time. Although this 
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timeout strategy (also called opportunistic shutdown (Dutot et 
al., 2017) reduces the energy wasted on idle periods, it can 
also degrades performance and increases the energy 
consumption in some situations (Orgerie et al., 2008).. 

In order to illustrate this, Figure 1 demonstrates an example 
with two timeout policies that differ only on the idle time 

 timeoutt  that must pass before a resource is turned-off. Assume 

that 0 1, ,...,t t T  are discrete time representations, jr  is the 

submit time of job j , 1 2, ,...,R R R  are computing resources, 

on offt   is the time to completely switch-off a resource, off ont   

is the boot up time, sP  is the power consumption at state s  and 

< < < <off idle on off off on computingP P P P P  . 

Starting with Figure 1(a), a timeout policy with 
= 2timeoutt t  is deployed. At 0t  all resources are being used by 

job 1 and the job queue is empty. At 2t  job 1 finishes and the 

resources remain idle until 4t . The idling time  2t  is 

observed and the timeout policy switches them off. The 
resources take from 4t  to 6t  to switch off and at 5t  job 2 is 

submitted but it cannot start because there is no available 
resource at the moment. At 6t  the state transition is 

completed and the resources are switched on to compute  
job 2. The resources take from 6t  to 7t  to switch-on and job 2 

can finally start. In this small example, the timeout policy 
increased both job 2 waiting time and the amount of energy 
consumed. 

Figure 1 Illustration of the effectiveness of a pure timeout policy  
(a) Timeout policy with = 2timeoutt t  (b) Timeout policy 

with = 4timeoutt t  

 

(a) 

 

(b) 

In Figure 1(b), we illustrate a scenario in which this situation 
may be mitigated by simply increasing the idling time of the 

policy to = 4timeoutt t . From 0t  to 2t  all resources are being 

used by job 1. Then, the resources remain idle for 3t  until 
job 2 is submitted at 5t . In this case, the resources are not 

switched off because the idling time is below the threshold. 
Job 2 can immediately start. The time resources spent in idle 
state compensate the cost of switching on and off and job 2 
was not delayed. If no other job is submitted to the system, 
after the idle time surpasses the threshold all resources will be 
switched off, therefore saving energy. However, there is no 
guarantee that another job will not arrive right after.  
To avoid this situation, the idling time must be a function of 
the actual workload. More specifically, the solution must 
have information about future jobs to determine if it 
compensates to switch off resources (Raïs et al., 2018). Such 
information is complex to obtain or predict since grid systems 
(application workload and resource utilisation) dramatically 
change over time (Legrand et al., 2019). 

An alternative to overcome this situation is illustrated in 
Figure 2. In Figure 2(a) a timeout policy is deployed and the 
same undesired behaviour can be seen. In this case, 1r  and 2r  

are being used by job 1 while 3r  and 4r  are switching off. At 

2t  job 2 requested two resources and 3r  and 4r  are switched 

on for it. The boot up time takes 1t , so job 2 can start at 3t . 

When job 2 starts, job 1 unexpectedly release its allocated 
resources that remain idle until the idling time is observed by 
the timeout policy. The same applies to the resources 
allocated for job 2 after it finishes at 5t . If the scheduler could 

know the execution time of job 1 beforehand, the unnecessary 
switch on of resources 3r  and 4r  could be avoided by simply 

delaying job 2 execution by 1t . Additionally, the energy 
wasted by these resources while they are idle or switching off 
can also be minimised. 

Figure 2 Illustration of the effectiveness of an off reservation 
approach (a) Timeout policy with = 2timeoutt   

(b) Timeout policy with an OR approach 

 

(a) 

 

(b) 
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It is possible to apply an OR approach instead of directly 
predicting the execution time of each job or the submission of 
future jobs. Figure 2(b) illustrates an OR approach that 
reserves some resources to itself in order to delay job 2 
execution and avoid the unnecessary switch on of resources 

3r  and 4r . An advantage of this method is that some jobs 

could be forced to wait until the switching on cost pays off, 
but the problem arises then in finding a balance between 
degrading performance and decreasing energy consumption. 
In this case, the algorithm must figure out how long it is 
worth delaying the execution of some jobs in order to save 
energy without dramatically increasing the jobs waiting time. 
Either way, the solution is able to achieve higher energy 
efficiency than pure timeout policies if the workloads contain 
a high number of sequential submissions. Performing such a 
task is not straightforward, but we demonstrate how this can 
be achieved with DRL in the next sections. 

2.2 The impact of sequential jobs submissions 

The potential energy savings achieved by an OR approach 
depend on the current workload in the system. As long as 
there are sequential jobs submissions, the strategy works. 
Formally, sequential job submissions are separated by a small 
period of time (less than 5 minutes in this work). Moreover, 
the jobs may belong to multiple users and request a distinct 
number of resources. We’re more interested in the inter-
arrival time. 

Sequential jobs can increase the energy consumption of a 
platform by forcing the resource management system to turn 
on nodes for hosting them. If the job has a small execution 
time, the energy spent in switching on and the energy 
consumed while it stays idle after being released are 
completely wasted. In order to exemplify this situation we 
performed an analysis with the management and scheduling 
traces collected from GRID’50001 sites. 

Table 1 summarises some statistical properties of each 
trace. The traces correspond to the entire operation time, since 
its date of arrival.2 For each trace we removed the jobs that 
did not execute, requested a larger amount of resources than 
the ones offered by the cluster, or set an invalid wall-time  
(the upper bound time for the request). In order to analyse the 
number of sequential jobs we organised the traces per day. 
The last column of Table 1 shows the percentage of such jobs 
in each trace. 

All clusters had an average utilisation rate. Clusters 
Grisou and Taurus had a larger number of job submissions 
than others. All clusters had a considerably high rate of 
sequential jobs – only Hercule and Orion are below 50%. 
The overall mean was about 58.4%, which indicates that the 

majority of the jobs are sequential submissions. In order to 
better analyse this behaviour, we decided to select the oldest 
clusters of each site (Taurus, Orion, Graphite and Econome) 
which also give us a wide range of platform sizes. 

Table 1 Traces summary 

Site Cluster Period 
# 

Cores 
# Jobs 

Seq. 
Jobs %

Util. % 

Lyon Taurus 
Sep 12–
Oct 19 

168 81,925 54.1% 51.7% 

Lyon Hercule 
Oct 12–
Oct 19 

48 50,003 46.9% 49.8% 

Lyon Nova 
Feb 17–
Oct 19 

368 42,171 52.9% 58.3% 

Lyon Orion 
Oct 12–
Oct 19 

48 66,005 39.7% 62.7% 

Nancy Graphite
Dec 13–
Oct 19 

64 60,786 56.0% 47.3% 

Nancy Grimoire
Jan 16–
Oct 19 

128 36,986 52.7% 56.4% 

Nancy Grisou 
Jan 16–
Oct 19 

816 99,291 75.4% 69.5% 

Nantes Econome
Apr 14–
Oct 19 

352 66,557 66.8% 57.6% 

Nantes Ecotype 
Jan 18–
Oct 19 

960 39,868 81.1% 66.5% 

In Figure 3, we show the occurrences of sequential jobs for 
each of the chosen clusters in a year basis along with the 
status it ended up. We removed the information from 
incomplete years to give a fair comparison. The 
occurrences of sequential jobs are not seasonal: every year 
there are more than 30% of sequential jobs and some years 
are almost completely dominated by them (like in 
Econome, 2015). We observe a high rate of jobs that ended 
up in an error state. The number of failures cannot be 
neglected and represent the majority of the jobs in the 
traces. Such behaviour reinforces the idea of burst 
submissions, which can be characterised by sequential 
submissions of the same job by a single user. If the job 
ended with an error, the submissions are commonly 
repeated and the number of sequential jobs naturally 
increases. 

This behaviour can be harmful in systems based on 
aggressive timeout policies. In such cases, if the node being 
used is turned off between the interval of the sequential 
submissions, more energy is wasted. Our work reduces 
energy waste by delaying the execution of sequential jobs if 
they do not pay off the cost of switching on the nodes. 
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Figure 3  Occurrences of sequential jobs in each analysed cluster trace per year 

 
 

3 Grid, workload and energy models 

This section provides background information on systems, 
workloads, and energy models. Following the specialised 
literature, the description is based on the models from SimGrid 
(Casanova et al., 2014) and Batsim (Dutot et al., 2015). 

3.1 Grid platform model 

A grid platform is composed of a set of resources clustered in 
multiple geographically distributed sites. Each site contains 
one or more clusters with an arbitrary number of computing 
servers (called nodes). Each node is composed by a set of 
processors that contains one or more cores. Users can request 
a whole cluster, a node, a processor or just a single core. 
Therefore, cores are simply referred to as resources r  and are 
characterised by: (i) the computing capacity rcpu , expressed 

in flop/s; (ii) the current state rs  and (iii) the current power 

consumption, expressed in watts. 
This work focuses on homogeneous clusters. The inter-

connection network is not considered. Therefore, each node 
has the same number of resources and each resource has the 
same computing capacity and power profile. Servers are 
independent and each one is composed of a unique set of 
resources. In this sense, servers can only be turned off if (and 
only if) all resources of the same server are in the idle state. 
When the node is initialised, all of its resources are also 
switched on. Therefore, a node is idle only when all of its 
resources are idle in the same way it is computing if at least 
one of its resources is computing. 

Figure 4 illustrates the resource model and the transitions 
between states. A resource r  can be in only one of  
the following states in a given time instant 

( ) = { , , , , }rs t S computing idle off on off off on   . Each 

state rs  has an associated power profile denoted by sP  and 

expressed in watts. Using the GRID’5000 data as e.g., when 

the resource is computing it consumes = 190computingP  W and 

while it remains idle it consumes = 95idleP  W on average. 

Figure 4 Transitions between resource states and relative power 
consumption 

 

Only idle resources can start computing jobs. Resources 
cannot be shared, meaning that each job uses 100% of its 
allocated resources computing capacity. Idle resources can be 
switched off, which takes time on offt   and consumes on offP  . 

In the example presented at Figure 4, the resource takes 3 
minutes to completely shutdown and consumes 101 W during 
the transition between states. Powered-off resources must be 
switched on to start handling new jobs, which also takes time 

off ont   and consumes off onP  . In the example, the resource 

takes 1 minute to boot up and consumes 125 W. Resources 
transitioning between on and off become unavailable until 
they completely finish the transition. The power profile 
adopted in Figure 4 is based on experiments conducted on the 
Taurus cluster (Poquet, 2017, p.68) and are used throughout 
this work to support the examples and experimental analysis. 

3.2 Workload model 

The workload is composed of a set J  of parallel and rigid jobs 
in which are submitted online and execute in batch mode. For 
each job j J , we consider the following characteristics: 
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 The arrival time rj of the job (only known when the job 
is submitted);  

 The number of requested computing resources jq ;  

 The expected processing time jwall  informed by the 

user (also called wall-time); and  

 The actual processing time jp  (only known when the 

job finishes).  

In order to fully reproduce the behaviour of each job in the 
traces we consider that the total amount of computation done 
is a function of the processing time jp  and of the 

computation capacity rcpu  of the allocated resources. 

Formally, the amount of computation is given by 
= *j j rcpu p cpu . For parallel jobs, which require more than 

one resource, the same amount of computation jcpu  is 

equally computed on each allocated resource resulting in the 
given jp . In both cases, the RJMS does not know this 

information until job finishes. A job cannot be pre-empted 
and the provisioned resources are only released when it 
finishes or when the jwall  expires. In the last case, the 

resource manager forces the job to finish. 

3.3 Energy model 

The total power consumption of a platform G  at time t  only 
depends on the state ( )rs t  of each resource r G . The 

energy consumption of a resource r  is given by 

( ) = ( )r sE t P t dt , expressed in joules. For example, following 

the profile in Figure 4 the energy consumed by a single 
resource to switch off is = 303rE  joules while the energy 

spent on boot up is equal to = 125rE  joules. Therefore, the 

total energy consumption of the platform G  is given by 

( ) = ( )G rr R
E t E t

 . This model is a special case of the 

model adopted in SimGrid (Casanova et al., 2014) in which 
resources can be idle (load = 0% ) or at full load 
(load = 100% ) when powered on. 

4 DRL-based power management 

This section details our proposed method. First we introduce 
the MDP formulation, followed by the explanation of how we 
implemented the algorithm within the RJMS. Lastly, we give 
some details about the training algorithm to better clarify how 
it learns to manage the resources in the platform. 

4.1 Problem formulation 

The shutdown problem consists of determining the moments 
to shutdown resources in order to save energy. Integrating it 
to an OR approach adds another layer of complexity, 
requiring the solution to determine for how long a job can be 
delayed in order to save energy. 

Jobs are delayed to mitigate the main disadvantage of 
pure shutdown policies, when the switching cost is higher 
than the cost of letting it idle or off. Therefore, the solution 
reserves some nodes to itself and keep them reserved while 
there is no expected gain on releasing them for a job. We 
leverage the power of DRL methods to teach an agent on how 
to perform this task. This learning phase occurs during  
the interaction with an environment, which must be  
defined as a MDP. A MDP is a mathematical framework for 
decision-making tasks that defines a tuple = ( , , , )M S A T R , 

in which S  is a finite state space, A    is a finite set of 
actions, : [0,1]T S A   is a transition function and 

:R S A S     is an action-dependent reward function 
(Sutton et al., 1992). 

The MDP defines the rules that orbit the relation among 
the agent, the environment, and the task it must perform. 
Given an state ts  at time t , an agent must choose an action 

( )ta A s  which induces a probability distribution ( , )t tT s a  

over S  to target states. In the next time step, the agent 

receives 1ts   along with a reward signal  1, ,t t tR s a s   

representing the quality of the action ta  taken at state ts . 

This process continues until a terminal state is encountered. 
The main objective is to select the sequence of actions that 
maximises its total expected reward. Thus, the agent 
optimises its policy : S A   through the reinforcement of 
the best rewarded actions for each state. The expected reward 
is an estimation of the real state/action values learned 
following a balance between exploration-exploitation. In the 
exploration phase, the agent collects new experiences that 
may allow it to overcome some local minima. In the other 
hand, the exploitation reinforces the best experiences and 
approximates its estimations based on the values observed in 
each state. Therefore, an important aspect of DRL methods 
(including RL) is to correctly estimate the value of the states 
or action-state pairs. 

Following this framework, we formulate the shutdown 
problem into a MDP as follows: 

4.1.1 State space 

We define the state as a function of n  past observations of 

the environment  1= ,..., ,t t n t tH O O O   since time t . An 

observation O  combines the current platform state, the 
current queue state and the current simulation state. The 
platform state provides the number of resources in each 

resource state | |,...,| |off computingr r   . The queue state provides 

the number of jobs in the queue | |Q , the promise jprom  

given by the scheduler policy for the start of the first job j  in 

the queue and the features f  of the first k  jobs, which are: 

 = , , ,| |k k k k userf q wall stretch j  (1) 

| |userj  represents the total number of jobs from the same user 

currently on the system and the stretch  is the ratio between 

the waiting time  wait  and the expected processing time of 

a job j , given by: 
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= j
j

j

wait
stretch

wall
 (2) 

Finally, the simulation state describes the current simulation 
time. The idea is allow the agent to infer the times in which 
the system is prone to receive a sequence of submissions. 

4.1.2 Action space 

Similar to a malleable job, the agent can expand or shrink its 
reservation size by requesting nodes to the RJMS. The 
reservation size is what determines the number of nodes 
which will be kept reserved to the agent and unavailable for 
scheduling. Therefore, the action space is given by 

 ,1,...,G , where =a G  means the agent wants to reserve 

all nodes in the platform; and =a   indicates the agent does 
not wish to reserve any node. The agent represents the 
platform administrator’s perspective. 

When the agent makes a reservation the nodes are 
immediately switched off following the model described in 
Sub-section 3.1. Reserved nodes cannot be freely used by 
jobs until the agent decides to decrease its reservation size. 
This behaviour is similar to when a user requests a number of 
resources but instead of computing a job the resources are 
switched off. 

4.1.3 Reward function 

We craft the reward signal to guide the agent towards our 
main objective: minimise the energy waste while not 
degrading performance beyond a threshold. Therefore, the 
reward is defined by equation (3). 

 = wasteR E QoS   (3) 

The energy waste  wasteE  is defined in equation (4). It 

corresponds to the total amount of energy spent by idle and 
switching nodes since the last decision-making process. 

=waste idle off on on offE E E E    (4) 

The QoS  is a job-centric metric and is defined by equation (5). 

j jifwait wall *
=

0 otherwise
j

j Q

q
QoS









  (5) 

The   parameter controls the aggressiveness of the algorithm 
by delimiting the maximum desirable waiting time for each 
job in the queue. The main idea is to encourage the algorithm 
to delay some jobs expecting it can avoid unnecessary node 
switching and reduce the waste of energy. In other words, the 
agent must find opportunities in which the extra delay on 
some jobs actually pays off. Therefore, the reward can be 
interpreted as a penalisation proportional to the current 
number of idle resources, the current number of resources 
switching from states off on  and on off  and to the 

current number of resources requested by jobs waiting in the 
queue that extrapolates the boundaries defined in the QoS  

metric. 

4.2 Algorithm description 

In the core of grid systems, RJMS is the main tool for platform 
and job management. It includes the reservation, allocation, 
scheduling, launching and monitoring of jobs and resources. 
These procedures can be designed and implemented as 
independent components that act coordinated. In this sense, 
DeepShutdown can be seen as an additional component within 
a RJMS. 

Figure 5 illustrates how our proposed approach is 
integrated into a general RJMS workflow. The algorithm acts 
just before the scheduler decides the number of resource 
candidates to be reserved. The RJMS interprets this 
requisition in the same way it would interpret users requests 
and the resources are reserved. In the second step the 
scheduling algorithm selects the jobs that must be executed 
on the remaining resources and the process goes on to the 
next timestep. 

Figure 5 The structure of the DeepShutdown 
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By making decisions before the scheduler, DeepShutdown 
can dynamically define boundaries for the scheduling 
algorithm by limiting the scheduling space that can be 
explored to fit the jobs from the queue. The goal is to force 
the scheduling algorithm to decrease the number of 
candidates in order to minimise its own objective by 
predicting the scheduling decisions. Moreover, the algorithm 
can block scheduling decisions that could potentially 
undermine its objective. 

4.3 Training algorithm 

In this paper, we use the PPO method (Schulman et al., 2017) 
to train the agent through an actor-critic style. In such style, 
N  parallel actors are responsible for the decision-making 
while a critic estimates the value of each observed state to 
evaluate actors decisions. The actors policy and the value 
function of the critic are represented by artificial neural 
networks. Besides the hidden layers, the actor network 
applies a Softmax function in the last layer to output a 
probability distribution over all possible actions while the 
critic network applies a linear function. The core idea is to 
increase the probability of the actions that are better than the 
expected return estimated by the critic in each observed state. 
Algorithm 1 shows the pseudocode for the training algorithm 
using PPO. 

Algorithm 1 

1: for = 1,2,...,iter I  do 

2:      for = 1,2,...,actor N  do 

3:           Run policy 
old  for T  timesteps 

4:           Compute advantage estimates 1
ˆ ˆ,... TA A  

5:      Optimise surrogate L  wrt  , with K
 epochs and minibatch size M NT  

6:      old   

The algorithm instantiate each actor with an independent 
instance of the environment (see Sub-section 4.1). The actors 
runs a policy 

old  for T  timesteps and the critic estimates 

the value of each observed state ( )tV s  to compute the 

advantage estimates. The advantage function tells the agent 
how much better its decision-making was when compared to 
what is actually known. In order to achieve this end, we use 
the GAE (Schulman et al., 2015) given by equation (6). 

1
1 1

ˆ = ( ) ... ( )T t
t t t TA      

     (6) 

where 1= ( ) ( )t t t tr V s V s    ,   is a discount factor,   

adjust the bias-variance trade-off, ( )tV s  is an estimate of the 

value of state s  and tr  is the reward received at time t  . 

Then, the surrogate loss ( )L   is computed and optimised 

with Adam algorithm (Kingma and Ba, 2014). 

ˆ ˆ ˆ( ) = [min( ( ) , ( ( ),1 ,1 ) ]t t t tL r A clip r A       (7) 

The PPO method introduces the objective function defined in 
equation (7). This function modifies the objective defined in 

the first term ˆ( ( ) )tr A  by clipping ( )tr   at 1   or 1  , 

depending on the advantage ˆ
tA  estimation. Formally defined 

in equation (8), the ( )tr   gives the probability ratio between 

the policy with the actual parameter vector   and the policy 
with the parameter vector before the update old . 

( | )
( ) =

( | )
t t

t
t told

a s
r

a s








 (8) 

In this way, changes which would make the objective improve 
beyond the clipped value are simply ignored and the same 
experiences collected by a policy 

old  can be used to perform 

multiple steps of optimisation without completely destroying 
the policy due to large updates (Schulman et al., 2017). 

5 Evaluation 

In this section, we describe the evaluation methodology 
adopted to evaluate the performance of DeepShutdown against 
commonly used shutdown policies. First, we detail the metrics 
we consider to than introduce the simulation environment 
along with the parameters choice. Lastly, the results for each 
experiment conducted are summarised and presented. 

5.1 Metrics 

We evaluate the performance of DeepShutdown and its 
behaviour using five performance metrics as follows: 

5.1.1 Energy waste 

Defined in equation (4), the total amount of energy wasted 
has a direct impact on the energy efficiency of each policy. 
When resources are idle or switching between off and on they 
are useless for the providers, neither executing a user job or 
saving energy. Therefore, we consider this amount of energy 
as a complete waste and its minimisation is of interest to grid 
providers. 

5.1.2 Total number of on-off cycles per node 

The objective of this metric is to evaluate the aggressiveness 
of each policy and how much it impacts in the energy 
consumption. A large number of cycles is not desirable as it 
can damage the hardware and it can create heat spots when a 
large number of resources are simultaneously switched on. 
This is also a metric of interest to providers as users want 
their jobs to be executed as soon as possible. 

5.1.3 Slowdown 

In order to balance this equation, we also consider some job-
centric metrics. The first one is the slowdown, which 
measures the ratio between the time that a job j  spent on the 

system and its actual processing time jp  (Feitelson and 

Rudolph, 1998). 
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The total time a job spent on the system (also called 
turnaround time) is a function of its waiting time and its 
processing time. The turnaround time is defined as 

=j j jturnaround wait p  and the waiting time is defined as 

=j j jwait start r , in which jstart  is the time at which the 

job started. Given that, the slowdown can formally be defined 
as given by equation (9). 

= j
j

j

turnaround
slowdown

p
 (9) 

5.1.4 Execution delay 

The slowdown can be considered as measure of the fairness 
of the scheduling policy and may not be fully adequate to 
analyse an OR policy. Such technique resides on the idea it is 
possible to delay some jobs in order to save energy. 
Therefore, the slowdown will likely be greater than or equal 
to a timeout policy. In order to give a fair comparison, we 
analyse the extra execution delay jdelay . This metric is 

defined by equation (10). 

  j

j

wait
* if

wall=

0 otherwise

j j

j

wait wall
delay

 


 




 (10) 

In other words, the jdelay  of a job j  indicates how much 

time over a threshold it was forced to stay in the queue. In 
this case, an OR policy is allowed to delay a job j  if its 

waiting time jwait  is less than the threshold *jwall  . 

5.1.5 Stretch 

Finally, we also consider the stretch of each job. The stretch 
is the ratio between the waiting time jwait  and the expected 

processing time jwall . We use this metric due to the fact an 

OR approach may consider the jwall  of each job to decide if 

it can be delayed. Moreover, jobs with a small processing 
time have a high influence on the slowdown and may 
penalise a policy even if they had an irrelevant waiting time. 
One of the objectives of an OR approach is to exclusively 
delay such jobs to save energy. Therefore, we only analyse 
the slowdown when discussing about the policy learned by 
the DeepShutdown. For this same reason, we decided to not 
use the bounded slowdown which diminishes the effect of 
small jobs (with a processing time of 10 or less minutes) 
(Feitelson and Rudolph, 1998). 

5.2 Simulation environment 

We simulate the behaviour of a RJMS and a grid platform to 
evaluate the performance achieved by the DeepShutdown 
strategy and the possible gains of an OR approach. We build an 
extension of Batsim3 (Dutot et al., 2015) to handle the 
peculiarities of DRL techniques named GridGym. GridGym  
 

follows the OpenAi Gym framework (Brockman et al., 2016) 
and can be easily extended to handle other simulation 
scenarios. In order to guarantee reproducibility, we provide this 
extension along with the environments used in a Git repository 
(see https://github.com/lccasagrande/DeepShutdown). 

We compare the performance of DeepShutdown to three 
pure timeout policies and one ideal OR technique. The 
timeout policies turn off the resources following different 
idling times = [0,1t  min and 5  min ] . We choose these 

idling times to analyse how the shutdown aggressiveness can 
impact the energy consumed. Nevertheless, it allows us to 
compare the behaviour of the policy learned by the 
DeepShutdown strategy by checking how close it’s from a 
pure shutdown policy. 

The last policy is an ideal OR technique that keeps all 
resources reserved and turned off as long as possible, 
respecting the QoS metric defined in (10). Thus, this policy 
uses future information about the actual processing times of 
each job running. Based on this information, it can find out 
the ideal moments to delay some jobs in the queue. This is an 
unrealistic policy because the actual processing time cannot 
be known before the job finishes but it can give some insights 
about how much we can achieve by following an OR 
technique instead of a pure timeout policy. This technique 
will only reduce its reservation size when the jobs cannot be 
delayed. Moreover, it receives the same view of the system as 
the other policies. 

These policies depict a broad representative sample of 
shutdown policies deployed on real data centres (Raïs et al., 
2016). In order to provide a fair comparison, we use the same 
scheduling policy and parameters in all experiments. We use 
the SAF policy along with a backfilling mechanism to 
increase the utilisation of the platform by handling jobs in the 
queue that can immediately start without delaying the first job 
execution to handle the scheduling task. This policy 
behaviour follows the EASY Backfilling policy, but instead 
of backfilling jobs in a FIFO order the queue is sorted by the 
estimated area of each job in an ascending order. This area is 
defined by equation (11) (Carastan-Santos et al., 2019): 

( ) = *j jf j wall q  (11) 

In order to evaluate the policies, we use the traces analysed in 
Sub-section 2.2. Thus, for a better understanding of the 
potential gains of an OR approach, we group the traces from 
each cluster into five bins (25%, 50%, 75% and 100%) based 
on the total occurrences of sequential jobs in each day. If the 
workload does not have any sequential jobs, applying an OR 
approach would not make sense. Therefore, we split the 
traces into bins to make it possible to evaluate different 
scenarios and provide a deeper analysis. 

Table 2 summarises this pre-processing step and includes 
the total number of days (workloads) per group for  
each cluster trace. Only days which had at least two or  
more jobs are included and the simulation is done  
one day at a time following an episodic setting. Each day in 
the trace correspond to a single workload and simulation 
experiment. 
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Table 2 Number of days per group for each cluster trace 
analysed 

 

Groups 

[0, 25%) [25, 50%) [50, 75%) [75, 100%) [100%] 

#1 #2 #3 #4 #5 

Econome 259 520 504 271 39 

Graphite 487 705 427 149 24 

Orion 659 777 496 129 28 

Taurus 441 947 612 130 22 

In order to speed up the simulation process, we scale up the 
time in the traces to minutes. Therefore, each experiment 
correspond to 1440 timesteps. 

The platform configuration is based on the hardware of 
each cluster defined in Table 1. For simplicity, the platform 
uses the same hardware configuration in every experiment but 
the number of resources available is different for each cluster 
setup. The hardware configurations along with the power 
profile are defined in Figure 4 and follow the hardware 
setting of the cluster Taurus (Poquet, 2017). In order to 
simulate the exact processing time of the jobs in the 
workloads, we defined each resource can compute 1 Mflop/s. 

DPM strategies can be deployed at different levels. In this 
work, we define that each policy can control the state of the 
nodes instead of controlling resources individually. This idea 
follows the default behaviour expected when a node is turned 
off. In this case, all of its resources become unavailable and 
can only be used after being turned on. This behaviour 
follows the description given in Sub-section 3.1. The number 
of nodes and its number of resources follows the actual 
hardware setting of each cluster.4 

5.3 Parameters 

We instantiate 16 parallel actors to collect experiences for 
training parameters. The neural network is composed of two 
layers. The first one is an LSTM layer with 128 memory units 
and the second is a FNN with 64 units. The discount factor 

   is set to 0.99 and   is 0.95. The   parameter of the 

objective function (see equation (7)) is 0.20. The algorithm is 
trained for 50 million timesteps and the optimisation is done 
every 1440 timesteps for 4 epochs. This is equivalent to 
training after a day of experiences. 

Our environment parameters included the last 20 
observations of the environment into the state and the 
algorithm can see the first 10 jobs in the queue. The 
parameter   of the reward function is 0.50 . The simulation 
time is fixed at 1440 minutes regardless of whether there are 
jobs to be submitted or to be completed. In order to provide a 
fair comparison, each policy receives the same snapshot of 
the environment. After every simulation, the environment is 
completely rebooted (clean slate). 

Moreover, to validate the agent can handle unseen data 
we also split the traces of each group into two distinct data 
sets. We reserve 80% of the traces for the training phase and 
the remaining one are only used for testing. During the 
training phase, the agent selects a random workload from the 

training set following an uniform distribution. In this way, we 
minimise the risks of over-fitting the model to a specific 
workload. 

5.4  Results 

Figure 6 plots the normalised cumulative daily energy waste 
for DeepShutdown versus other policies at different workload 
groups. Each subplot contains a dashed line separating the 
results for each data set. 

The left side gives the results for the training set while on 
the right side are the results obtained with the testing set. In 
this way, we can compare if DeepShutdown can keep its 
performance on new data. Moreover, experiments conducted 
with DeepShutdown are averaged over 4 repetitions because 
its policy is not deterministic. 

Not surprisingly, the timeout policies are less energy-
efficient as the idling time increases. An aggressive shutdown 
that turns nodes off immediately after they become idle 
demonstrates considerably energy savings when compared to 
a soft policy but the same cannot be said when compared with 
an OR approach. In all traces, the unrealistic OR policy 
(OR*) achieved best energy savings. The DS exhibits a 
similar behaviour to the OR* policy, and it considerably 
surpass its results on some traces. This becomes more evident 
on the traces from clusters Orion and Graphite that are small 
size clusters and on the Groups 4 and 5 that has a high 
number of sequential jobs. Group 5 traces shows DS achieved 
the best energy efficiency but at Groups 1 and 2 from 
Econome and at Group 3 from Taurus it mimics the 
behaviour of the (0)T  policy achieving the same efficiency. 

Analysing the results from Group 5, the DS performance 
indicates that the agent figured out that it could surpass the 
QoS metric to achieve even higher energy savings. In this 
case DS favoured the minimisation of the energy in detriment 
of the QoS. This becomes even more evident on results 
obtained with traces from Orion. In this case, DS is equal to 
or better than the OR* policy. Moreover, DS achieved good 
performance regardless of the changing nature of the 
workloads. Its performance on new data stayed constant, and 
no performance slowdown was observed. 

Comparing the averaged results on a group basis, at 
Group 1 the OR* policy achieved better energy savings than 
DS by 2.5% while DS saved 13%, 25.4% and 51% more 
energy in comparison to pure shutdown policies T(0), T(1) 
and T(5), respectively. Analysing Group 2, a similar 
behaviour is observed and the OR* policy is better than DS 
by 12.5%. Group 3, DS is better than the most aggressive 
shutdown policy T(0) by 10.8% and it saves 44% more 
energy than the most soft policy T(5). Furthermore, the OR* 
policy exhibits an improvement of 18% when compared to 
the DS in this group of jobs. 

Group 4, OR* saves just 12% more energy than DS while 
DS saves 18% more energy than the T(0) policy. Lastly, 
Group 5 presents DS is better than the OR* policy by 18% 
while the differences from pure shutdown policies increases 
up to 26.7%, 34.8% and 56.1% with T(0), T(1) and T(5), 
respectively. 
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Figure 6  Cumulative daily waste of energy. For each trace, the dashed line defines a boundary between the training (left side) and testing 
days (right side) 

 

From another perspective, in tab:overall_results we average 
the results in a cluster basis. We observed, again, 
DeepShutdown stands out in terms of energy efficiency 
when compared to the timeout policies. Compared to the 
Timeout (0) policy, DS achieved a reduction of 2.9% to 
30% on the waste of energy with about 11.6% to 33.8% less 
shutdown events. Compared to a soft shutdown policy, DS 
outperformed the Timeout (5) by 40.6% to 56.5% on the 
energy waste while the average number of shutdown events 
is similar. In the Graphite and Orion traces, it even 
surpassed the Timeout (5) in the number of shutdown events 
by 11.1% and 8.5% less state switches saving 56.5% and 
55.4% more energy, respectively. 

Compared to the unrealistic OR* policy there are even 
better possibilities to save energy by delaying some jobs 
execution. The DS was only better at the Graphite and Orion 
traces, which are the smallest clusters in number of resources. 

In the remaining traces, the OR* policy saved 20% more 
energy on average than the policy learned by the 
DeepShutdown with 10–16, 1% less shutdown events. 
Moreover, it is as softer as the Timeout (5) policy while 
achieving considerably higher rates of energy savings. These 
results demonstrate that an OR approach can in fact minimises 
the wastes with a similar behaviour to a soft shutdown policy if 
we allow it to delay the execution of some jobs. 

By observing the job-centric metrics, we notice that 
DeepShutdown is more aggressive than the OR* policy. In 
the worst case it increased the averaged stretch time by 36.6% 
but it remains below the defined threshold (see Sub-section 
5.3) in almost all traces. Compared to the Timeout (0), 
DeepShutdown increased by 46.6 to 80% the averaged stretch 
time. These results demonstrates the trade-off between energy 
savings and performance: DeepShutdown increased the 
stretch time to increase the energy savings. 
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Table 3 Overall performance of DS compared against other heuristics over all traces 

 
Delay (min) Energy waste (J) # Switches Stretch (min) 

avg std min max avg std min max avg std min max avg std min max 

Econome 

DS 48.50 116.77 0.0 1002.00 21738.40 20493.94 125.0 199485.5 93.50 80.38 1.0 797.00 0.22 1.03 0.0 26.68

OR* 53.16 124.34 0.0 1002.00 18076.86 19474.91 125.0 223416.0 84.96 86.38 1.0 1044.00 0.21 1.07 0.0 26.68

T(0) 49.69 123.29 0.0 1002.00 22392.20 23398.09 250.0 271352.0 106.12 106.36 2.0 1268.00 0.15 1.00 0.0 26.68

T(1) 49.54 123.24 0.0 1002.00 25483.59 25960.63 250.0 329490.0 100.21 97.68 2.0 1260.00 0.15 0.99 0.0 26.68

T(5) 49.48 123.54 0.0 1002.00 36624.22 32931.17 250.0 307125.0 85.35 72.73 2.0 720.00 0.14 0.99 0.0 26.68

Graphite 

DS 50.92 116.47 0.0 770.00 6712.60 6219.47 125.0 51549.5 30.63 27.94 1.0 238.00 0.41 1.38 0.0 22.88

OR* 54.27 123.59 0.0 770.00 7216.18 6587.65 125.0 72855.0 33.92 30.36 1.0 340.00 0.30 1.39 0.0 29.28

T(0) 52.81 125.29 0.0 770.00 8950.24 8287.19 125.0 89024.0 42.20 38.47 1.0 416.00 0.26 1.41 0.0 29.28

T(1) 52.99 125.43 0.0 770.00 10401.94 9381.74 125.0 87820.0 40.35 35.84 1.0 350.00 0.26 1.40 0.0 29.28

T(5) 52.91 125.40 0.0 770.00 15434.66 13357.23 125.0 87452.0 34.48 28.82 1.0 208.00 0.25 1.41 0.0 29.35

Orion 

DS 72.27 132.62 0.0 782.67 6284.59 6930.93 125.0 70165.0 28.07 30.69 1.0 291.25 0.54 2.10 0.0 66.24

OR* 70.34 136.79 0.0 782.67 6763.39 7551.15 125.0 67003.0 31.84 34.79 1.0 302.00 0.41 2.04 0.0 63.95

T(0) 67.23 139.61 0.0 782.67 8996.35 9892.78 250.0 146727.0 42.41 45.92 2.0 687.00 0.30 1.47 0.0 34.19

T(1) 67.14 139.48 0.0 782.67 10081.97 10864.42 220.0 108591.0 38.95 40.81 1.0 356.00 0.30 1.47 0.0 34.19

T(5) 67.39 139.76 0.0 782.67 14104.64 15307.39 220.0 125931.0 30.69 33.36 1.0 295.00 0.30 1.47 0.0 34.19

Taurus 

DS 48.31 106.29 0.0 1149.00 16513.70 12811.54 125.0 134672.0 72.53 54.15 1.0 584.00 0.30 1.48 0.0 28.54

OR* 53.60 113.04 0.0 1149.00 13747.39 12307.84 125.0 194121.0 62.43 53.19 1.0 904.00 0.29 1.46 0.0 29.51

T(0) 49.99 114.82 0.0 1149.00 17441.70 14984.53 375.0 264884.0 82.10 68.27 3.0 1236.00 0.22 1.45 0.0 29.51

T(1) 50.02 114.75 0.0 1149.00 19664.81 16836.47 375.0 271768.0 76.56 63.23 3.0 1032.00 0.22 1.44 0.0 28.72

T(5) 50.23 115.25 0.0 1149.00 28714.38 22920.56 375.0 256368.0 65.29 49.51 2.0 612.00 0.22 1.44 0.0 29.12

 
Not surprisingly, all timeout policies presents a similar 
stretch time because they do not deliberately delay the jobs. 
The minor differences observed are due to the time required 
to turn on and off the nodes. This behaviour can also be 
seen on the delay time, there is a very slight different 
between these policies. In almost all traces the averaged 
delay time is smaller on the DeepShutdown results. It was 
better than the OR* policy, which indicates that its strategy 
did not force the jobs to wait for too long periods after 
violating the defined QoS. In other words, it is trying to 
minimise the downside effect of an OR approach. 

The standard deviation and the range of the values are 
considerably high. Furthermore, the values observed for each 
trace are very different and cannot be compared. This means 
the workloads can drastically change within distinct clusters 
and days, reinforcing what was already observed on Legrand 
et al. (2019). 

6 Discussion 

This section analyses what DeepShutdown has learned. We 
present the characteristics of the most delayed jobs and 
compare them to the OR and Timeout (0) policies. Moreover, 
we provide information about the convergence behaviour of 
DeepShutdown. 

6.1 What is DeepShutdown doing? 

The idea of an OR approach is to explore the workload 
properties in order to save energy by delaying some jobs.  
 

Specifically, we want the algorithm to delay the  
sequential jobs which may cause unnecessary boot ups.  
In order to validate this idea, we first analyse the  
slowdown of the jobs as function of its inter-arrival time. 
Figure 7 shows the slowdown of each trace on distinct groups 
of jobs. 

A logarithmic transformation was performed on the 
slowdown to reduce the effect of outliers and the jobs are 
grouped based on their inter-arrival time. DeepShutdown is 
compared to OR* to check how close its behaviour is from a 
OR approach. Owing the same reason, we compare it with 
the Timeout (0) to check how close it is from a pure 
shutdown strategy. We can note DeepShutdown exhibits 
almost the highest range of slowdown values in every job 
group. The slowdown is considerably higher on jobs with a 
small inter-arrival time but it eventually diminishes with the 
increase in the inter-arrival time. This means that the 
DeepShutdown is indeed favouring the delay of sequential 
jobs, so its behaviour is closer to an OR approach. The same 
can also be observed for the OR* policy, which validates 
this insight. 

Just delaying the sequential job is inefficient to 
guarantee higher energy savings. On one hand, if the job 
executes for a long period, then there is no gain in forcing 
the delay of the next job in the queue. On the other hand, if 
it exhibits a small processing time than the extra delay may 
pays off. We analysed the actual processing time of the 
most delayed jobs on each trace. The resulting analysis is 
presented in Figure 8. The actual processing time is 
normalised by a logarithmic transformation. 
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Figure 7 Slowdown comparative of distinct job groups on each trace 

 

Figure 8 Current processing time of the top 10k jobs with highest slowdown values 

 

DeepShutdown is mostly delaying the jobs with a small 
processing time when compared to the Timeout (0) policy. 
This behaviour becomes more evident on the Orion traces 
that exhibits the best energy savings achieved by DS. 
Delaying jobs with small processing times minimise the 
number of boot ups while increasing the energy savings. This 
indicates that DeepShutdown is indeed exploring the 
workload properties to identify the sequential jobs with small 
processing times. 

6.2 The convergence behaviour 

We analyse the performance of DeepShutdown during the 
training phase to understand its convergence behaviour. 
Figure 9 illustrates the learning curves for each trace. Each 
value is an average of 100 experiments of all workloads from 
the training set and the score is defined in equation (3). We 
showed the averaged scores of the policies with the highest 
energy savings to compare performance over time along with 
a policy that reserve nodes by random. 
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Figure 9 Learning curve 

 

As expected, the performance of DeepShutdown improves 
with the number of iterations. On the beginning it shows very 
low performance and its behaviour is similar to the random 
policy. When it starts to interact the environment its 
performance starts to improve. On the smallest clusters, in 
number of resources (Graphite and Orion), DeepShutdown 
exhibits the best performance after 100–250 iterations. On 
their other hand, with bigger platform sizes (Econome and 
Taurus) it took more iterations to learn a policy which give 
results close to the OR* policy. This happens due to the fact 
of the state space increasing with the platform size, therefore 
the exploration is faster on cluster with a small number of 
resources. 

The same variation observed on Table 3 is also observed 
in the learning curves by analysing the variation of the scores. 
This indicates that identifying sequential jobs with small 
processing times is not a straightforward task. Besides 
exhibiting a similar frequency of sequential jobs, each 
experiment (called episode in a RL setting) considerably 
differs from each other. 

7 Related work 

The power efficiency of computing platforms started to 
become a concern in the 2000s. The performance-at-any-cost 
paradigm is neither sustainable nor environmentally friendly 
(Feng and Cameron, 2007). Since then there is a broad range 
of studies focusing on different strategies. A few namely: 
fine-grained power management (Etinski et al., 2012; 
Marzolla and Mirandola, 2013); coarse-grained power 
management (Dutot et al., 2017); job scheduling (Feller et al., 
2011); and thermal management (Sarood and Kale, 2011). 

Earlier studies on shutdown strategies started on 2001. 
Using a load distribution algorithm it was possible to save 

energy by concentrating the load on fewer nodes and 
switching-off the remaining ones (Pinheiro et al., 2001). In a 
similar way, Chase et al. (2001) used an economic framework 
and a greedy algorithm to dynamically adapt the number of 
active resources to the demand. It concentrates the load on the 
minimal active set of resources in order to save energy. Both 
approaches are similar to ours since they adapt the number of 
active resources based on the load to increase the possibilities 
in energy savings. However, they did not consider the 
transition costs for switching resources between on and off. 

Considering the transition cost, is important due to the 
time and energy required for switching a resource. Moreover, 
a resource cannot be used while switching between states. 
Thus, from this perspective, ERIDIS (Orgerie and Lefèvre, 
2011) works at the platform level and decides whether a 
resource must be turned off based on workload predictions. 
The prediction part relies on averaged values of past 
inactivity periods and feedback given by the differences 
observed from the predictions and the real values. In a similar 
way, the Inertial Shutdown algorithm (Poquet, 2017, p.85) 
adopts an OR approach to dynamically adjust the number of 
active resources based on estimations of the unresponsiveness 
variation. This unresponsiveness is an estimation of the 
required amount of time to compute the pending load in the 
queue. When the unresponsiveness is increasing the algorithm 
switches some resources on otherwise it will turn them off. 
Both approaches use predictions to decides when resources 
must be turned off. The main difference to our approach is 
that we use DRL to train an agent to deal with the shutdown 
of resources. The prediction part is done at the agent and is 
inferred from the experiences observed during the training 
phase. 

Several other studies used RL for resource management 
(Galstyan et al., 2004; Moghadam and Babamir, 2018;  
Wu et al., 2011; Zhang and Dietterich, 1995; Zomaya et al., 
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1998). Moreover, DRL is an extension of RL methods that 
uses DL methods to deal with complex tasks. Its main 
adoption comes from the recent breakthroughs achieved with 
DRL techniques (Mnih et al., 2015) leading to questions 
about its performance when dealing with resource 
management problems. With this in mind, DeepRM (Mao et 
al., 2016) is an attempt to build agents that learn to schedule 
in order to minimise the slowdown. It uses a similar method 
called REINFORCE but its objective and environment model 
(MDP formulation) differ from ours. Exemplifying, it 
summarises the platform by using a matrix of RxT , where 
R  is the number of resources and T  is the time window. The 
idea is similar to a Gantt chart and each job in the queue is 
also represented by this matrix. Moreover, the evaluation is 
conducted using synthetic workloads while we use traces 
from a real grid system. DRL-Cloud (Cheng et al., 2018) is 
another DRL approach to minimise the energy cost in cloud 
computing. It uses a value-based method named DQN to deal 
with the resource provisioning and task scheduling. Both 
cloud workloads and environment model greatly differs from 
the models we adopted in this work. In grid platforms, a node 
is commonly not allowable to be shared among different 
users while in cloud computing virtual machines from distinct 
users can be hosted on the same node. Therefore, further 
comparisons cannot be made. 

Liu et al. (2017) proposed a hierarchical approach 
combining RL methods in different levels to deal with the 
resource allocation and the power management. At the 
highest level it uses an auto-encoder to extract a lower-
dimensional input representation and a DQN to allocate 
resources. In the local tier an LSTM network is trained to 
predict the next job inter-arrival time to be used by a Q-
learning agent in the control of local servers. The main 
difference is that they combined the prediction part with a RL 
agent to determine the idling time before a resource is turned-
off while we adopted an end-to-end solution with DRL. 
Moreover, our proposal controls a computing platform 
instead of just a local server. 

8 Considerations and future work 

Energy consumption is a key metric related to the 
sustainability of a data centre infrastructure. The increasing in 
size and complexity of computing platforms requires 
sophisticated solutions to improve resource utilisation 
efficiency. Performance-at-any-cost is no longer wanted. 
Dynamic power management procedures take advantage of 
periods when resources are underutilised or unused to save 
energy. Idle resources represent a waste of energy since they 
are serving neither the users nor the providers. Such waste 
cannot be neglected and different strategies must be deployed 
to decrease the operational costs. 

This paper explores a suite of shutdown strategies. We 
clarify the main disadvantage of deploying a pure shutdown 
policy and we propose an alternative that employs an OR  
 
 

approach. This allows the solution to exploit the workload to  
identify jobs that can be delayed in order to save energy. 
Keeping this in mind, we leverage the power of DRL to teach 
an agent how to perform these tasks. The proposed method, 
named DeepShutdown, was able to learn how and when  
to reserve some resources and turn them off in order to 
increase the energy savings. Results revealed it had a similar 
behaviour when compared to an oracle-based OR policy. Jobs 
with small processing times are the most delayed ones. The 
energy savings become more evident when compared with 
different rule-based shutdown policies. 

Motivated by the lack of such tools we developed a suite 
of environments which can be used to train agents with RL 
methods on different resource management tasks. The 
environment, named GridGym, is an extension of Batsim that 
leverages the OpenAI framework to handle the peculiarities 
of such methods. Although there is a good range of rule-
based solutions available, there is still room to be explored by 
adaptive solutions on the exploitation of the workloads 
patterns for better efficiency. GridGym is a step forward that 
can facilitate the experiments and the training process. 

Applying DRL on resource management procedures is 
feasible but there is still work to be done. First, we must 
conduct experiments on traces from other grid platforms. We 
showed that the proportion of sequential jobs is considerably 
high on traces observed from the GRID’5000, but questions 
remain if this behaviour can also be seen on other platforms. 
Another point to be explored is the development of the 
reward function. Different metrics can also be considered to 
guide the algorithm. Finally, we must integrate the scheduling 
problem onto the DeepShutdown environment to verify if it 
can even surpass the performance achieved when using an 
external scheduling policy. 
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Notes 

1 The GRID’5000 is a testbed for experiment-driven research 
with more than 12,000 cores grouped in 31 homogeneous 
clusters which are geographically distributed in  
8 sites on France. More information can be found in 
https://www.grid5000.fr/w/Grid5000:Home 

2 The hardware information about each cluster is available on 
www.grid5000.fr/w/Hardware 

3 Batsim simulates the behaviour of a RJMS over the  
SimGrid, which simulates a computing platform. See 
https://batsim.readthedocs.io/en/latest/ 

4 Information available on https://www.grid5000.fr/w/ 
Hardware 


