
Int. J. Grid and Utility Computing, Vol. 13, No. 6, 2022 589

Copyright © 2022 Inderscience Enterprises Ltd.

Don’t hurry be green: scheduling servers shutdown
in grid computing with deep reinforcement learning

Lucas Camelo Casagrande
Graduate Program in Applied Computing,
Santa Catarina State University,
Florianópolis, Joinville, Santa Catarina, Brazil
Email: lucas.casagrande@edu.udesc.br

Guilherme Piêgas Koslovski,
Charles Christian Miers and
Maurício Aronne Pillon*
Graduate Program in Applied Computing,
Santa Catarina State University,
Florianópolis, Joinville, Santa Catarina, Brazil
Email: guilherme.koslovski@udesc.br
Email: charles.miers@udesc.br
Email: mauricio.pillon@udesc.br
*Corresponding author

Nelson Mimura Gonzalez
IBM Research,
Thomas J. Watson Research Centre,
Armonk, New York, USA
Email: nmimura@ibm.com

Abstract: Grid computing platforms dissipate massive amounts of energy. Energy efficiency,
therefore, is an essential requirement that directly affects its sustainability. Resource management
systems deploy rule-based approaches to mitigate this cost. However, these strategies do not
consider the patterns of the workloads being executed. In this context, we demonstrate how a
solution based on Deep Reinforcement Learning is used to formulate an adaptive power-efficient
policy. Specifically, we implement an off-reservation approach to overcome the disadvantages of
an aggressive shutdown policy and minimise the frequency of shutdown events. Through
simulation, we train the algorithm and evaluate it against commonly used shutdown policies
using real traces from GRID’5000. Based on the experiments, we observed a reduction of 46%
on the averaged energy waste with an equivalent frequency of shutdown events compared to a
soft shutdown policy.

Keywords: deep reinforcement learning; grid computing; energy-aware scheduling; shutdown
strategy; Markov decision process; resource management.

Reference to this paper should be made as follows: Casagrande, L.C., Koslovski, G.P., Miers,
C.C., Pillon, M.A. and Gonzalez, N.M. (2022) ‘Don’t hurry be green: scheduling servers
shutdown in grid computing with deep reinforcement learning’, Int. J. Grid and Utility
Computing, Vol. 13, No. 6, pp.589–606.

Biographical notes: Lucas Camelo Casagrande received his Master’s degree from Santa
Catarina State University (UDESC) and Bachelor’s degree from the Educational Society for
Santa Catarina (UNISOCIESC).

Guilherme Piêgas Koslovski is a Professor at Santa Catarina State University (UDESC) in
Joinville/SC, and Member of the LabP2D (Laboratory of Parallel and Distributed Processing) of
UDESC which has a private OpenStack cloud. He received his Doctorate degree from The École
Normale Supérieure de Lyon at Lyon/France, Master’s degree from Federal University of Santa
Maria (UFSM) and Bachelor’s degree in Computer Science from the UFSM.

Charles Christian Miers is Professor at Santa Catarina State University (UDESC) in Joinville/SC
and Member of the LabP2D (Laboratory of Parallel and Distributed Processing) of UDESC
which has a private OpenStack cloud. He received his Doctorate degree in Computer Engineering

590 L.C. Casagrande et al.

from University of São Paulo (USP), the Master’s degree in Computer Science from the Federal
University of Santa Catarina (UFSC) and Bachelor’s degree in Data Processing from the Santa
Catarina State University. He is Security Consultant at LockNet Security Solutions, in the
Software Area, from 1999 to 2003, having worked on projects of national companies (private and
public) and multinationals.

Maurício Aronne Pillon is Professor at Santa Catarina State University (UDESC) in Joinville/SC
and Member of the LabP2D (Laboratory of Parallel and Distributed Processing) of UDESC
which has a private OpenStack cloud. He received his Doctorate degree from the Institut National
Polytechnique of Grenoble at France, Master’s degree from Pontifical Catholic University of Rio
Grande do Sul (PUC-RS) and Bachelor’s degree in Informatics from the Regional University of
the Northwest of the State of Rio Grande do Sul. He also received his Post-doctorate degree from
the Federal University of Rio Grande do Sul (UFRGS), conducted in the Research Group –
Parallel and Distributed Processing Group (GPPD).

Nelson Mimura Gonzalez received his BSc, MSc and PhD degrees in Electrical/Computing
Engineering from the University of Sao Paulo, Escola Politecnica (Poli-USP), Brazil in 2011,
2013 and 2015, respectively. Post-doctoral degree from IBM Thomas J. Watson Research Centre.
Currently, he works at the IBM Thomas J. Watson Research Centre in Yorktown Heights,
New York, USA.

This paper is a revised and expanded version of a paper entitled ‘DeepScheduling: Grid
Computing Job Scheduler based on Deep Reinforcement Learning’ presented at ‘AINA 2020:
The 34th International Conference on Advanced Information Networking and Applications’,
15–17 April 2020, Caserta, Italy.

1 Introduction

Grid computing provides massive on-demand computing
power by sharing resources among multiple geographically
distributed institutions. Virtual organisation groups allow
sharing, discovery and allocation of computing resources
among providers and consumers. Not surprisingly, grids
became a popular solution to handle intensive parallel
applications and large-scale scientific experiments (Foster et
al., 2008; Primet et al., 2009).

Sharing resources to constitute large-scale platforms is an
appealing and affordable choice to increase the number of
resources available to a given application. By adding more
providers, a grid platform can easily range from a few
hundred (e.g., DAS-4 Overview (n.d.)) to thousands of CPU
cores (e.g., GRID’5000 (Bolze et al., 2006)). Such paradigm
allows users to scale up their applications to solve more
complex problems, but at a price (Galizia and Quarati, 2012).
The energy consumption increases almost linearly with
resource utilisation. Taking into consideration the size of the
platform, such consumption can easily become unfeasible if
not tackled (Sun et al., 2015). For example, operating a
thousand processors fluctuating from 95 W at idle to more
than 200 W under stress leads to a power consumption of 95
to 200 kW (Poquet, 2017, p.68). Even not considering the
environmental impact and the costs with cooling, there is a
non-negligible financial cost associated to just keeping such
platform powered on. In this way, power bills have become a
significant expense that affects the sustainability of the
infrastructure (Dayarathna et al., 2016). Therefore, energy-
efficient strategies are one of the main interests of system
administrators and providers (Hinz et al., 2018; Tarplee et al.,
2016).

Achieving better energy efficiency not only depends on
the choice of efficient hardware but also on the management

strategies deployed on different levels of the platform
(Nesmachnow et al., 2013; Orgerie et al., 2014). As an
example, the energy consumed by underutilised servers
(called nodes) can be minimised by deploying DVFS
techniques at the job level. Such technique can scale down
the processor frequency based on its usage pattern to allow
energy savings when jobs are not executing computation
intensive tasks (Huang and Feng, 2009; Young et al., 2013).
At the scheduler level, power capping or energy budget
techniques can be used to keep the energy consumption under
a threshold by limiting the usage of the platform (Borghesi et
al., 2015). In addition, energy-aware job scheduling policies
can be adopted to improve the energy efficiency using multi-
constraint objectives (Shi et al., 2017). At platform level,
shutdown techniques use the time between jobs to minimise
the number of idle nodes. Idle nodes consume a considerable
amount of energy, therefore simply turning them off leads to
potential energy savings (Benoit et al., 2018; Hikita et al.,
2008; Raïs et al., 2016; Terzopoulos and Karatza, 2013).

Energy minimisation has been vastly studied through the
years and there are plenty of different DPM strategies
available. Among the most popular, shutdown is one of the
most promising solutions due to its expected higher impact on
energy efficiency (Bates et al., 2015). Shutdown strategies
turn off nodes that are idle for a time, therefore consuming
considerably less energy than powered on but idle nodes.
Moreover, there are no gains on keeping nodes powered on if
they are not going to be used for a long time. Keeping these
nodes on only wastes energy while neither serving providers
nor users needs. Such assumption would enforce the adoption
of an aggressive shutdown policy, turning off nodes
immediately after they become idle. However, in some
situations aggressive policies are not the best solution
(Orgerie et al., 2008).

 Don’t hurry be green 591

Identifying the moments to turn off nodes depends on the
workload and on the infrastructure of the platform. For
example, if a node takes 5 minutes to shutdown, 10 minutes
to wake up, and the job arrival time is less than or equal to 15
minutes, there is no benefit in using an aggressive shutdown
policy because the node keeps switching between states most
of the time. Moreover, the energy consumed while switching
can be higher than if it just stayed idle. To overcome this
situation, one must consider the peculiarities of each system
(Liu et al., 2017; Raïs et al., 2018). However, using historical
data is not a straightforward task due to the dynamicity of
grid systems and workloads. Consequently, the solutions
typically involve using simple but scalable rule-based policies
that are not based on workload patterns. Applying the same
set of rules on systems with different infrastructures
and usage patterns leads to an underoptimised setup
(Legrand et al., 2019). Adaptive strategies address this issue
(Kintsakis et al., 2019; Orhean et al., 2018).

Regarding adaptive control, RL introduces methods in
which an agent can learn a policy through a trial and error
procedure. The agent starts with no knowledge. At each
interaction with the environment the agent receives a stimulus
(called reward) based on the quality of its decision. This is
based on the common sense notion that if one chooses an
action that is followed by a satisfactory state, then the
tendency to execute that same action should be reinforced. As
the number of interactions goes to infinity, the agent tries to
learn a policy that maximises its expected (sometimes
discounted) future reward (Sutton et al., 1992). This capacity
makes RL a possible solution to dynamically adapt the policy
to distinct scenarios, but it has some limitations that may
prevent it from learning optimal policies on problems with
large state spaces. Due to the complex nature of a grid
system, such strategy may not fit without manual work on the
reduction of the problem scope (Orhean et al., 2018). In such
cases, DRL techniques that join RL with DL are able to
approximate a solution (Mnih et al., 2015).

In this context, we propose a novel server
shutdown strategy based on DRL named DeepShutdown.
DeepShutdown operates at the platform level along with the
scheduling policy to determine when nodes must be turned off
and for how long they must be kept in that state. We use an OR
approach that works similar to a load consolidation algorithm,
but that reserves a subset of nodes to itself. Nodes reserved
cannot be used by the job scheduler, which will consequently
concentrate the queue load on the remaining nodes. In this way,
it’s possible to save energy while minimising the number of
On-Off cycles by adapting the number of available nodes.
DeepShutdown exploits the workload to learn the moments
when it worth to increase/decrease the nodes available for
scheduling the grid jobs in order to save energy by
concentrating the load on fewer nodes. We relax the
assumption that a job must execute as soon as possible and give
the algorithm a upper bound limit on the waiting time for each
job. DeepShutdown is allowed to delay some jobs up some
point if the energy economy pays off.

By considering the peculiarities of each workload and
allowing the extra delay in the start of some jobs, we achieve
considerable energy savings. Moreover, although some
arguments discourages prediction methods for servers

shutdown (Raïs et al., 2016) we demonstrate how it can be
successfully employed to achieve better results than pure
shutdown policies. In order to validate this, we conduct
several simulations using real workload traces from the
GRID’5000 testbed (Bolze et al., 2006) and we estimate the
impact of the workload on different shutdown techniques.
From the results, we observe an average increase of 11.7% on
energy savings with 17.9% less shutdown events in
comparison to an aggressive shutdown policy. By comparing
it with a soft policy, the savings achieved by DeepShutdown
increases up to 46% on average while the number of
shutdown events increases only 4%.

In short, the main contributions of our work are:

 We address the influence of job submission pattern and
job failures on a rule-based shutdown policy by
analysing the GRID’5000 traces.

 We demonstrate how an OR technique can explore
workload properties to improve shutdown-based policies.

 We demonstrate how the shutdown problem can be
modelled into a MDP and used to learn a policy through
state-of-the-art DRL techniques.

 We present a shutdown strategy that can adapt to the
usage pattern of the platform and we conduct several
experiments to evaluate this adaptability.

 We show how DRL can be used to optimise the grid
resource and jobs management.

 We extend Batsim (Dutot et al., 2015) to deal with the
peculiarities of DRL techniques by joining it with
OpenAi Gym (Brockman et al., 2016). This integration
(named GridGym) provides a series of ready-to-use
environments that deal with problems commonly faced
by resource management systems.

The rest of this paper is organised as follows. Section 2
details the motivation and describes the GRID’5000 traces.
Section 3 explains the models and formal notation. Section 4
details DeepShutdown and the MDP formulation. Section 5
describes the simulation environment and presents the results.
Section 6 discusses the policy learned by the DeepShutdown.
Section 7 presents related work. Finally, Section 8 concludes
this work and presents future directions.

2 Motivation and problem definition

This section presents the motivation behind our work. We
highlight the disadvantages of pure shutdown policies and we
explore alternatives that could be considered. We support our
claims by analysing a set of GRID’5000 traces.

2.1 Disadvantages of pure shutdown policies

The power consumption of idle resources has a significant
impact in the overall energy consumed by a computing
platform. To overcome this situation, a common choice is to
turn off resources after an idle period of time. Although this

592 L.C. Casagrande et al.

timeout strategy (also called opportunistic shutdown (Dutot et
al., 2017) reduces the energy wasted on idle periods, it can
also degrades performance and increases the energy
consumption in some situations (Orgerie et al., 2008)..

In order to illustrate this, Figure 1 demonstrates an example
with two timeout policies that differ only on the idle time

 timeoutt that must pass before a resource is turned-off. Assume

that 0 1, ,...,t t T are discrete time representations, jr is the

submit time of job j , 1 2, ,...,R R R are computing resources,

on offt is the time to completely switch-off a resource, off ont

is the boot up time, sP is the power consumption at state s and

< < < <off idle on off off on computingP P P P P .

Starting with Figure 1(a), a timeout policy with
= 2timeoutt t is deployed. At 0t all resources are being used by

job 1 and the job queue is empty. At 2t job 1 finishes and the

resources remain idle until 4t . The idling time 2t is

observed and the timeout policy switches them off. The
resources take from 4t to 6t to switch off and at 5t job 2 is

submitted but it cannot start because there is no available
resource at the moment. At 6t the state transition is

completed and the resources are switched on to compute
job 2. The resources take from 6t to 7t to switch-on and job 2

can finally start. In this small example, the timeout policy
increased both job 2 waiting time and the amount of energy
consumed.

Figure 1 Illustration of the effectiveness of a pure timeout policy
(a) Timeout policy with = 2timeoutt t (b) Timeout policy

with = 4timeoutt t

(a)

(b)

In Figure 1(b), we illustrate a scenario in which this situation
may be mitigated by simply increasing the idling time of the

policy to = 4timeoutt t . From 0t to 2t all resources are being

used by job 1. Then, the resources remain idle for 3t until
job 2 is submitted at 5t . In this case, the resources are not

switched off because the idling time is below the threshold.
Job 2 can immediately start. The time resources spent in idle
state compensate the cost of switching on and off and job 2
was not delayed. If no other job is submitted to the system,
after the idle time surpasses the threshold all resources will be
switched off, therefore saving energy. However, there is no
guarantee that another job will not arrive right after.
To avoid this situation, the idling time must be a function of
the actual workload. More specifically, the solution must
have information about future jobs to determine if it
compensates to switch off resources (Raïs et al., 2018). Such
information is complex to obtain or predict since grid systems
(application workload and resource utilisation) dramatically
change over time (Legrand et al., 2019).

An alternative to overcome this situation is illustrated in
Figure 2. In Figure 2(a) a timeout policy is deployed and the
same undesired behaviour can be seen. In this case, 1r and 2r

are being used by job 1 while 3r and 4r are switching off. At

2t job 2 requested two resources and 3r and 4r are switched

on for it. The boot up time takes 1t , so job 2 can start at 3t .

When job 2 starts, job 1 unexpectedly release its allocated
resources that remain idle until the idling time is observed by
the timeout policy. The same applies to the resources
allocated for job 2 after it finishes at 5t . If the scheduler could

know the execution time of job 1 beforehand, the unnecessary
switch on of resources 3r and 4r could be avoided by simply

delaying job 2 execution by 1t . Additionally, the energy
wasted by these resources while they are idle or switching off
can also be minimised.

Figure 2 Illustration of the effectiveness of an off reservation
approach (a) Timeout policy with = 2timeoutt

(b) Timeout policy with an OR approach

(a)

(b)

 Don’t hurry be green 593

It is possible to apply an OR approach instead of directly
predicting the execution time of each job or the submission of
future jobs. Figure 2(b) illustrates an OR approach that
reserves some resources to itself in order to delay job 2
execution and avoid the unnecessary switch on of resources

3r and 4r . An advantage of this method is that some jobs

could be forced to wait until the switching on cost pays off,
but the problem arises then in finding a balance between
degrading performance and decreasing energy consumption.
In this case, the algorithm must figure out how long it is
worth delaying the execution of some jobs in order to save
energy without dramatically increasing the jobs waiting time.
Either way, the solution is able to achieve higher energy
efficiency than pure timeout policies if the workloads contain
a high number of sequential submissions. Performing such a
task is not straightforward, but we demonstrate how this can
be achieved with DRL in the next sections.

2.2 The impact of sequential jobs submissions

The potential energy savings achieved by an OR approach
depend on the current workload in the system. As long as
there are sequential jobs submissions, the strategy works.
Formally, sequential job submissions are separated by a small
period of time (less than 5 minutes in this work). Moreover,
the jobs may belong to multiple users and request a distinct
number of resources. We’re more interested in the inter-
arrival time.

Sequential jobs can increase the energy consumption of a
platform by forcing the resource management system to turn
on nodes for hosting them. If the job has a small execution
time, the energy spent in switching on and the energy
consumed while it stays idle after being released are
completely wasted. In order to exemplify this situation we
performed an analysis with the management and scheduling
traces collected from GRID’50001 sites.

Table 1 summarises some statistical properties of each
trace. The traces correspond to the entire operation time, since
its date of arrival.2 For each trace we removed the jobs that
did not execute, requested a larger amount of resources than
the ones offered by the cluster, or set an invalid wall-time
(the upper bound time for the request). In order to analyse the
number of sequential jobs we organised the traces per day.
The last column of Table 1 shows the percentage of such jobs
in each trace.

All clusters had an average utilisation rate. Clusters
Grisou and Taurus had a larger number of job submissions
than others. All clusters had a considerably high rate of
sequential jobs – only Hercule and Orion are below 50%.
The overall mean was about 58.4%, which indicates that the

majority of the jobs are sequential submissions. In order to
better analyse this behaviour, we decided to select the oldest
clusters of each site (Taurus, Orion, Graphite and Econome)
which also give us a wide range of platform sizes.

Table 1 Traces summary

Site Cluster Period

Cores
Jobs

Seq.
Jobs %

Util. %

Lyon Taurus
Sep 12–
Oct 19

168 81,925 54.1% 51.7%

Lyon Hercule
Oct 12–
Oct 19

48 50,003 46.9% 49.8%

Lyon Nova
Feb 17–
Oct 19

368 42,171 52.9% 58.3%

Lyon Orion
Oct 12–
Oct 19

48 66,005 39.7% 62.7%

Nancy Graphite
Dec 13–
Oct 19

64 60,786 56.0% 47.3%

Nancy Grimoire
Jan 16–
Oct 19

128 36,986 52.7% 56.4%

Nancy Grisou
Jan 16–
Oct 19

816 99,291 75.4% 69.5%

Nantes Econome
Apr 14–
Oct 19

352 66,557 66.8% 57.6%

Nantes Ecotype
Jan 18–
Oct 19

960 39,868 81.1% 66.5%

In Figure 3, we show the occurrences of sequential jobs for
each of the chosen clusters in a year basis along with the
status it ended up. We removed the information from
incomplete years to give a fair comparison. The
occurrences of sequential jobs are not seasonal: every year
there are more than 30% of sequential jobs and some years
are almost completely dominated by them (like in
Econome, 2015). We observe a high rate of jobs that ended
up in an error state. The number of failures cannot be
neglected and represent the majority of the jobs in the
traces. Such behaviour reinforces the idea of burst
submissions, which can be characterised by sequential
submissions of the same job by a single user. If the job
ended with an error, the submissions are commonly
repeated and the number of sequential jobs naturally
increases.

This behaviour can be harmful in systems based on
aggressive timeout policies. In such cases, if the node being
used is turned off between the interval of the sequential
submissions, more energy is wasted. Our work reduces
energy waste by delaying the execution of sequential jobs if
they do not pay off the cost of switching on the nodes.

594 L.C. Casagrande et al.

Figure 3 Occurrences of sequential jobs in each analysed cluster trace per year

3 Grid, workload and energy models

This section provides background information on systems,
workloads, and energy models. Following the specialised
literature, the description is based on the models from SimGrid
(Casanova et al., 2014) and Batsim (Dutot et al., 2015).

3.1 Grid platform model

A grid platform is composed of a set of resources clustered in
multiple geographically distributed sites. Each site contains
one or more clusters with an arbitrary number of computing
servers (called nodes). Each node is composed by a set of
processors that contains one or more cores. Users can request
a whole cluster, a node, a processor or just a single core.
Therefore, cores are simply referred to as resources r and are
characterised by: (i) the computing capacity rcpu , expressed

in flop/s; (ii) the current state rs and (iii) the current power

consumption, expressed in watts.
This work focuses on homogeneous clusters. The inter-

connection network is not considered. Therefore, each node
has the same number of resources and each resource has the
same computing capacity and power profile. Servers are
independent and each one is composed of a unique set of
resources. In this sense, servers can only be turned off if (and
only if) all resources of the same server are in the idle state.
When the node is initialised, all of its resources are also
switched on. Therefore, a node is idle only when all of its
resources are idle in the same way it is computing if at least
one of its resources is computing.

Figure 4 illustrates the resource model and the transitions
between states. A resource r can be in only one of
the following states in a given time instant

() = { , , , , }rs t S computing idle off on off off on . Each

state rs has an associated power profile denoted by sP and

expressed in watts. Using the GRID’5000 data as e.g., when

the resource is computing it consumes = 190computingP W and

while it remains idle it consumes = 95idleP W on average.

Figure 4 Transitions between resource states and relative power
consumption

Only idle resources can start computing jobs. Resources
cannot be shared, meaning that each job uses 100% of its
allocated resources computing capacity. Idle resources can be
switched off, which takes time on offt and consumes on offP .

In the example presented at Figure 4, the resource takes 3
minutes to completely shutdown and consumes 101 W during
the transition between states. Powered-off resources must be
switched on to start handling new jobs, which also takes time

off ont and consumes off onP . In the example, the resource

takes 1 minute to boot up and consumes 125 W. Resources
transitioning between on and off become unavailable until
they completely finish the transition. The power profile
adopted in Figure 4 is based on experiments conducted on the
Taurus cluster (Poquet, 2017, p.68) and are used throughout
this work to support the examples and experimental analysis.

3.2 Workload model

The workload is composed of a set J of parallel and rigid jobs
in which are submitted online and execute in batch mode. For
each job j J , we consider the following characteristics:

 Don’t hurry be green 595

 The arrival time rj of the job (only known when the job
is submitted);

 The number of requested computing resources jq ;

 The expected processing time jwall informed by the

user (also called wall-time); and

 The actual processing time jp (only known when the

job finishes).

In order to fully reproduce the behaviour of each job in the
traces we consider that the total amount of computation done
is a function of the processing time jp and of the

computation capacity rcpu of the allocated resources.

Formally, the amount of computation is given by
= *j j rcpu p cpu . For parallel jobs, which require more than

one resource, the same amount of computation jcpu is

equally computed on each allocated resource resulting in the
given jp . In both cases, the RJMS does not know this

information until job finishes. A job cannot be pre-empted
and the provisioned resources are only released when it
finishes or when the jwall expires. In the last case, the

resource manager forces the job to finish.

3.3 Energy model

The total power consumption of a platform G at time t only
depends on the state ()rs t of each resource r G . The

energy consumption of a resource r is given by

() = ()r sE t P t dt , expressed in joules. For example, following

the profile in Figure 4 the energy consumed by a single
resource to switch off is = 303rE joules while the energy

spent on boot up is equal to = 125rE joules. Therefore, the

total energy consumption of the platform G is given by

() = ()G rr R
E t E t

 . This model is a special case of the

model adopted in SimGrid (Casanova et al., 2014) in which
resources can be idle (load = 0%) or at full load
(load = 100%) when powered on.

4 DRL-based power management

This section details our proposed method. First we introduce
the MDP formulation, followed by the explanation of how we
implemented the algorithm within the RJMS. Lastly, we give
some details about the training algorithm to better clarify how
it learns to manage the resources in the platform.

4.1 Problem formulation

The shutdown problem consists of determining the moments
to shutdown resources in order to save energy. Integrating it
to an OR approach adds another layer of complexity,
requiring the solution to determine for how long a job can be
delayed in order to save energy.

Jobs are delayed to mitigate the main disadvantage of
pure shutdown policies, when the switching cost is higher
than the cost of letting it idle or off. Therefore, the solution
reserves some nodes to itself and keep them reserved while
there is no expected gain on releasing them for a job. We
leverage the power of DRL methods to teach an agent on how
to perform this task. This learning phase occurs during
the interaction with an environment, which must be
defined as a MDP. A MDP is a mathematical framework for
decision-making tasks that defines a tuple = (, , ,)M S A T R ,

in which S is a finite state space, A is a finite set of
actions, : [0,1]T S A is a transition function and

:R S A S is an action-dependent reward function
(Sutton et al., 1992).

The MDP defines the rules that orbit the relation among
the agent, the environment, and the task it must perform.
Given an state ts at time t , an agent must choose an action

()ta A s which induces a probability distribution (,)t tT s a

over S to target states. In the next time step, the agent

receives 1ts along with a reward signal 1, ,t t tR s a s

representing the quality of the action ta taken at state ts .

This process continues until a terminal state is encountered.
The main objective is to select the sequence of actions that
maximises its total expected reward. Thus, the agent
optimises its policy : S A through the reinforcement of
the best rewarded actions for each state. The expected reward
is an estimation of the real state/action values learned
following a balance between exploration-exploitation. In the
exploration phase, the agent collects new experiences that
may allow it to overcome some local minima. In the other
hand, the exploitation reinforces the best experiences and
approximates its estimations based on the values observed in
each state. Therefore, an important aspect of DRL methods
(including RL) is to correctly estimate the value of the states
or action-state pairs.

Following this framework, we formulate the shutdown
problem into a MDP as follows:

4.1.1 State space

We define the state as a function of n past observations of

the environment 1= ,..., ,t t n t tH O O O since time t . An

observation O combines the current platform state, the
current queue state and the current simulation state. The
platform state provides the number of resources in each

resource state | |,...,| |off computingr r . The queue state provides

the number of jobs in the queue | |Q , the promise jprom

given by the scheduler policy for the start of the first job j in

the queue and the features f of the first k jobs, which are:

 = , , ,| |k k k k userf q wall stretch j (1)

| |userj represents the total number of jobs from the same user

currently on the system and the stretch is the ratio between

the waiting time wait and the expected processing time of

a job j , given by:

596 L.C. Casagrande et al.

= j
j

j

wait
stretch

wall
 (2)

Finally, the simulation state describes the current simulation
time. The idea is allow the agent to infer the times in which
the system is prone to receive a sequence of submissions.

4.1.2 Action space

Similar to a malleable job, the agent can expand or shrink its
reservation size by requesting nodes to the RJMS. The
reservation size is what determines the number of nodes
which will be kept reserved to the agent and unavailable for
scheduling. Therefore, the action space is given by

 ,1,...,G , where =a G means the agent wants to reserve

all nodes in the platform; and =a indicates the agent does
not wish to reserve any node. The agent represents the
platform administrator’s perspective.

When the agent makes a reservation the nodes are
immediately switched off following the model described in
Sub-section 3.1. Reserved nodes cannot be freely used by
jobs until the agent decides to decrease its reservation size.
This behaviour is similar to when a user requests a number of
resources but instead of computing a job the resources are
switched off.

4.1.3 Reward function

We craft the reward signal to guide the agent towards our
main objective: minimise the energy waste while not
degrading performance beyond a threshold. Therefore, the
reward is defined by equation (3).

 = wasteR E QoS (3)

The energy waste wasteE is defined in equation (4). It

corresponds to the total amount of energy spent by idle and
switching nodes since the last decision-making process.

=waste idle off on on offE E E E (4)

The QoS is a job-centric metric and is defined by equation (5).

j jifwait wall *
=

0 otherwise
j

j Q

q
QoS

 (5)

The parameter controls the aggressiveness of the algorithm
by delimiting the maximum desirable waiting time for each
job in the queue. The main idea is to encourage the algorithm
to delay some jobs expecting it can avoid unnecessary node
switching and reduce the waste of energy. In other words, the
agent must find opportunities in which the extra delay on
some jobs actually pays off. Therefore, the reward can be
interpreted as a penalisation proportional to the current
number of idle resources, the current number of resources
switching from states off on and on off and to the

current number of resources requested by jobs waiting in the
queue that extrapolates the boundaries defined in the QoS

metric.

4.2 Algorithm description

In the core of grid systems, RJMS is the main tool for platform
and job management. It includes the reservation, allocation,
scheduling, launching and monitoring of jobs and resources.
These procedures can be designed and implemented as
independent components that act coordinated. In this sense,
DeepShutdown can be seen as an additional component within
a RJMS.

Figure 5 illustrates how our proposed approach is
integrated into a general RJMS workflow. The algorithm acts
just before the scheduler decides the number of resource
candidates to be reserved. The RJMS interprets this
requisition in the same way it would interpret users requests
and the resources are reserved. In the second step the
scheduling algorithm selects the jobs that must be executed
on the remaining resources and the process goes on to the
next timestep.

Figure 5 The structure of the DeepShutdown

 Don’t hurry be green 597
.

By making decisions before the scheduler, DeepShutdown
can dynamically define boundaries for the scheduling
algorithm by limiting the scheduling space that can be
explored to fit the jobs from the queue. The goal is to force
the scheduling algorithm to decrease the number of
candidates in order to minimise its own objective by
predicting the scheduling decisions. Moreover, the algorithm
can block scheduling decisions that could potentially
undermine its objective.

4.3 Training algorithm

In this paper, we use the PPO method (Schulman et al., 2017)
to train the agent through an actor-critic style. In such style,
N parallel actors are responsible for the decision-making
while a critic estimates the value of each observed state to
evaluate actors decisions. The actors policy and the value
function of the critic are represented by artificial neural
networks. Besides the hidden layers, the actor network
applies a Softmax function in the last layer to output a
probability distribution over all possible actions while the
critic network applies a linear function. The core idea is to
increase the probability of the actions that are better than the
expected return estimated by the critic in each observed state.
Algorithm 1 shows the pseudocode for the training algorithm
using PPO.

Algorithm 1

1: for = 1,2,...,iter I do

2: for = 1,2,...,actor N do

3: Run policy
old for T timesteps

4: Compute advantage estimates 1
ˆ ˆ,... TA A

5: Optimise surrogate L wrt , with K
 epochs and minibatch size M NT

6: old

The algorithm instantiate each actor with an independent
instance of the environment (see Sub-section 4.1). The actors
runs a policy

old for T timesteps and the critic estimates

the value of each observed state ()tV s to compute the

advantage estimates. The advantage function tells the agent
how much better its decision-making was when compared to
what is actually known. In order to achieve this end, we use
the GAE (Schulman et al., 2015) given by equation (6).

1
1 1

ˆ = () ... ()T t
t t t TA

 (6)

where 1= () ()t t t tr V s V s , is a discount factor,

adjust the bias-variance trade-off, ()tV s is an estimate of the

value of state s and tr is the reward received at time t .

Then, the surrogate loss ()L is computed and optimised

with Adam algorithm (Kingma and Ba, 2014).

ˆ ˆ ˆ() = [min(() , ((),1 ,1)]t t t tL r A clip r A (7)

The PPO method introduces the objective function defined in
equation (7). This function modifies the objective defined in

the first term ˆ(())tr A by clipping ()tr at 1 or 1 ,

depending on the advantage ˆ
tA estimation. Formally defined

in equation (8), the ()tr gives the probability ratio between

the policy with the actual parameter vector and the policy
with the parameter vector before the update old .

(|)
() =

(|)
t t

t
t told

a s
r

a s

 (8)

In this way, changes which would make the objective improve
beyond the clipped value are simply ignored and the same
experiences collected by a policy

old can be used to perform

multiple steps of optimisation without completely destroying
the policy due to large updates (Schulman et al., 2017).

5 Evaluation

In this section, we describe the evaluation methodology
adopted to evaluate the performance of DeepShutdown against
commonly used shutdown policies. First, we detail the metrics
we consider to than introduce the simulation environment
along with the parameters choice. Lastly, the results for each
experiment conducted are summarised and presented.

5.1 Metrics

We evaluate the performance of DeepShutdown and its
behaviour using five performance metrics as follows:

5.1.1 Energy waste

Defined in equation (4), the total amount of energy wasted
has a direct impact on the energy efficiency of each policy.
When resources are idle or switching between off and on they
are useless for the providers, neither executing a user job or
saving energy. Therefore, we consider this amount of energy
as a complete waste and its minimisation is of interest to grid
providers.

5.1.2 Total number of on-off cycles per node

The objective of this metric is to evaluate the aggressiveness
of each policy and how much it impacts in the energy
consumption. A large number of cycles is not desirable as it
can damage the hardware and it can create heat spots when a
large number of resources are simultaneously switched on.
This is also a metric of interest to providers as users want
their jobs to be executed as soon as possible.

5.1.3 Slowdown

In order to balance this equation, we also consider some job-
centric metrics. The first one is the slowdown, which
measures the ratio between the time that a job j spent on the

system and its actual processing time jp (Feitelson and

Rudolph, 1998).

598 L.C. Casagrande et al.

The total time a job spent on the system (also called
turnaround time) is a function of its waiting time and its
processing time. The turnaround time is defined as

=j j jturnaround wait p and the waiting time is defined as

=j j jwait start r , in which jstart is the time at which the

job started. Given that, the slowdown can formally be defined
as given by equation (9).

= j
j

j

turnaround
slowdown

p
 (9)

5.1.4 Execution delay

The slowdown can be considered as measure of the fairness
of the scheduling policy and may not be fully adequate to
analyse an OR policy. Such technique resides on the idea it is
possible to delay some jobs in order to save energy.
Therefore, the slowdown will likely be greater than or equal
to a timeout policy. In order to give a fair comparison, we
analyse the extra execution delay jdelay . This metric is

defined by equation (10).

 j

j

wait
* if

wall=

0 otherwise

j j

j

wait wall
delay

 (10)

In other words, the jdelay of a job j indicates how much

time over a threshold it was forced to stay in the queue. In
this case, an OR policy is allowed to delay a job j if its

waiting time jwait is less than the threshold *jwall .

5.1.5 Stretch

Finally, we also consider the stretch of each job. The stretch
is the ratio between the waiting time jwait and the expected

processing time jwall . We use this metric due to the fact an

OR approach may consider the jwall of each job to decide if

it can be delayed. Moreover, jobs with a small processing
time have a high influence on the slowdown and may
penalise a policy even if they had an irrelevant waiting time.
One of the objectives of an OR approach is to exclusively
delay such jobs to save energy. Therefore, we only analyse
the slowdown when discussing about the policy learned by
the DeepShutdown. For this same reason, we decided to not
use the bounded slowdown which diminishes the effect of
small jobs (with a processing time of 10 or less minutes)
(Feitelson and Rudolph, 1998).

5.2 Simulation environment

We simulate the behaviour of a RJMS and a grid platform to
evaluate the performance achieved by the DeepShutdown
strategy and the possible gains of an OR approach. We build an
extension of Batsim3 (Dutot et al., 2015) to handle the
peculiarities of DRL techniques named GridGym. GridGym

follows the OpenAi Gym framework (Brockman et al., 2016)
and can be easily extended to handle other simulation
scenarios. In order to guarantee reproducibility, we provide this
extension along with the environments used in a Git repository
(see https://github.com/lccasagrande/DeepShutdown).

We compare the performance of DeepShutdown to three
pure timeout policies and one ideal OR technique. The
timeout policies turn off the resources following different
idling times = [0,1t min and 5 min] . We choose these

idling times to analyse how the shutdown aggressiveness can
impact the energy consumed. Nevertheless, it allows us to
compare the behaviour of the policy learned by the
DeepShutdown strategy by checking how close it’s from a
pure shutdown policy.

The last policy is an ideal OR technique that keeps all
resources reserved and turned off as long as possible,
respecting the QoS metric defined in (10). Thus, this policy
uses future information about the actual processing times of
each job running. Based on this information, it can find out
the ideal moments to delay some jobs in the queue. This is an
unrealistic policy because the actual processing time cannot
be known before the job finishes but it can give some insights
about how much we can achieve by following an OR
technique instead of a pure timeout policy. This technique
will only reduce its reservation size when the jobs cannot be
delayed. Moreover, it receives the same view of the system as
the other policies.

These policies depict a broad representative sample of
shutdown policies deployed on real data centres (Raïs et al.,
2016). In order to provide a fair comparison, we use the same
scheduling policy and parameters in all experiments. We use
the SAF policy along with a backfilling mechanism to
increase the utilisation of the platform by handling jobs in the
queue that can immediately start without delaying the first job
execution to handle the scheduling task. This policy
behaviour follows the EASY Backfilling policy, but instead
of backfilling jobs in a FIFO order the queue is sorted by the
estimated area of each job in an ascending order. This area is
defined by equation (11) (Carastan-Santos et al., 2019):

() = *j jf j wall q (11)

In order to evaluate the policies, we use the traces analysed in
Sub-section 2.2. Thus, for a better understanding of the
potential gains of an OR approach, we group the traces from
each cluster into five bins (25%, 50%, 75% and 100%) based
on the total occurrences of sequential jobs in each day. If the
workload does not have any sequential jobs, applying an OR
approach would not make sense. Therefore, we split the
traces into bins to make it possible to evaluate different
scenarios and provide a deeper analysis.

Table 2 summarises this pre-processing step and includes
the total number of days (workloads) per group for
each cluster trace. Only days which had at least two or
more jobs are included and the simulation is done
one day at a time following an episodic setting. Each day in
the trace correspond to a single workload and simulation
experiment.

 Don’t hurry be green 599

Table 2 Number of days per group for each cluster trace
analysed

Groups

[0, 25%) [25, 50%) [50, 75%) [75, 100%) [100%]

#1 #2 #3 #4 #5

Econome 259 520 504 271 39

Graphite 487 705 427 149 24

Orion 659 777 496 129 28

Taurus 441 947 612 130 22

In order to speed up the simulation process, we scale up the
time in the traces to minutes. Therefore, each experiment
correspond to 1440 timesteps.

The platform configuration is based on the hardware of
each cluster defined in Table 1. For simplicity, the platform
uses the same hardware configuration in every experiment but
the number of resources available is different for each cluster
setup. The hardware configurations along with the power
profile are defined in Figure 4 and follow the hardware
setting of the cluster Taurus (Poquet, 2017). In order to
simulate the exact processing time of the jobs in the
workloads, we defined each resource can compute 1 Mflop/s.

DPM strategies can be deployed at different levels. In this
work, we define that each policy can control the state of the
nodes instead of controlling resources individually. This idea
follows the default behaviour expected when a node is turned
off. In this case, all of its resources become unavailable and
can only be used after being turned on. This behaviour
follows the description given in Sub-section 3.1. The number
of nodes and its number of resources follows the actual
hardware setting of each cluster.4

5.3 Parameters

We instantiate 16 parallel actors to collect experiences for
training parameters. The neural network is composed of two
layers. The first one is an LSTM layer with 128 memory units
and the second is a FNN with 64 units. The discount factor

 is set to 0.99 and is 0.95. The parameter of the

objective function (see equation (7)) is 0.20. The algorithm is
trained for 50 million timesteps and the optimisation is done
every 1440 timesteps for 4 epochs. This is equivalent to
training after a day of experiences.

Our environment parameters included the last 20
observations of the environment into the state and the
algorithm can see the first 10 jobs in the queue. The
parameter of the reward function is 0.50 . The simulation
time is fixed at 1440 minutes regardless of whether there are
jobs to be submitted or to be completed. In order to provide a
fair comparison, each policy receives the same snapshot of
the environment. After every simulation, the environment is
completely rebooted (clean slate).

Moreover, to validate the agent can handle unseen data
we also split the traces of each group into two distinct data
sets. We reserve 80% of the traces for the training phase and
the remaining one are only used for testing. During the
training phase, the agent selects a random workload from the

training set following an uniform distribution. In this way, we
minimise the risks of over-fitting the model to a specific
workload.

5.4 Results

Figure 6 plots the normalised cumulative daily energy waste
for DeepShutdown versus other policies at different workload
groups. Each subplot contains a dashed line separating the
results for each data set.

The left side gives the results for the training set while on
the right side are the results obtained with the testing set. In
this way, we can compare if DeepShutdown can keep its
performance on new data. Moreover, experiments conducted
with DeepShutdown are averaged over 4 repetitions because
its policy is not deterministic.

Not surprisingly, the timeout policies are less energy-
efficient as the idling time increases. An aggressive shutdown
that turns nodes off immediately after they become idle
demonstrates considerably energy savings when compared to
a soft policy but the same cannot be said when compared with
an OR approach. In all traces, the unrealistic OR policy
(OR*) achieved best energy savings. The DS exhibits a
similar behaviour to the OR* policy, and it considerably
surpass its results on some traces. This becomes more evident
on the traces from clusters Orion and Graphite that are small
size clusters and on the Groups 4 and 5 that has a high
number of sequential jobs. Group 5 traces shows DS achieved
the best energy efficiency but at Groups 1 and 2 from
Econome and at Group 3 from Taurus it mimics the
behaviour of the (0)T policy achieving the same efficiency.

Analysing the results from Group 5, the DS performance
indicates that the agent figured out that it could surpass the
QoS metric to achieve even higher energy savings. In this
case DS favoured the minimisation of the energy in detriment
of the QoS. This becomes even more evident on results
obtained with traces from Orion. In this case, DS is equal to
or better than the OR* policy. Moreover, DS achieved good
performance regardless of the changing nature of the
workloads. Its performance on new data stayed constant, and
no performance slowdown was observed.

Comparing the averaged results on a group basis, at
Group 1 the OR* policy achieved better energy savings than
DS by 2.5% while DS saved 13%, 25.4% and 51% more
energy in comparison to pure shutdown policies T(0), T(1)
and T(5), respectively. Analysing Group 2, a similar
behaviour is observed and the OR* policy is better than DS
by 12.5%. Group 3, DS is better than the most aggressive
shutdown policy T(0) by 10.8% and it saves 44% more
energy than the most soft policy T(5). Furthermore, the OR*
policy exhibits an improvement of 18% when compared to
the DS in this group of jobs.

Group 4, OR* saves just 12% more energy than DS while
DS saves 18% more energy than the T(0) policy. Lastly,
Group 5 presents DS is better than the OR* policy by 18%
while the differences from pure shutdown policies increases
up to 26.7%, 34.8% and 56.1% with T(0), T(1) and T(5),
respectively.

600 L.C. Casagrande et al.

Figure 6 Cumulative daily waste of energy. For each trace, the dashed line defines a boundary between the training (left side) and testing
days (right side)

From another perspective, in tab:overall_results we average
the results in a cluster basis. We observed, again,
DeepShutdown stands out in terms of energy efficiency
when compared to the timeout policies. Compared to the
Timeout (0) policy, DS achieved a reduction of 2.9% to
30% on the waste of energy with about 11.6% to 33.8% less
shutdown events. Compared to a soft shutdown policy, DS
outperformed the Timeout (5) by 40.6% to 56.5% on the
energy waste while the average number of shutdown events
is similar. In the Graphite and Orion traces, it even
surpassed the Timeout (5) in the number of shutdown events
by 11.1% and 8.5% less state switches saving 56.5% and
55.4% more energy, respectively.

Compared to the unrealistic OR* policy there are even
better possibilities to save energy by delaying some jobs
execution. The DS was only better at the Graphite and Orion
traces, which are the smallest clusters in number of resources.

In the remaining traces, the OR* policy saved 20% more
energy on average than the policy learned by the
DeepShutdown with 10–16, 1% less shutdown events.
Moreover, it is as softer as the Timeout (5) policy while
achieving considerably higher rates of energy savings. These
results demonstrate that an OR approach can in fact minimises
the wastes with a similar behaviour to a soft shutdown policy if
we allow it to delay the execution of some jobs.

By observing the job-centric metrics, we notice that
DeepShutdown is more aggressive than the OR* policy. In
the worst case it increased the averaged stretch time by 36.6%
but it remains below the defined threshold (see Sub-section
5.3) in almost all traces. Compared to the Timeout (0),
DeepShutdown increased by 46.6 to 80% the averaged stretch
time. These results demonstrates the trade-off between energy
savings and performance: DeepShutdown increased the
stretch time to increase the energy savings.

 Don’t hurry be green 601

Table 3 Overall performance of DS compared against other heuristics over all traces

Delay (min) Energy waste (J) # Switches Stretch (min)

avg std min max avg std min max avg std min max avg std min max

Econome

DS 48.50 116.77 0.0 1002.00 21738.40 20493.94 125.0 199485.5 93.50 80.38 1.0 797.00 0.22 1.03 0.0 26.68

OR* 53.16 124.34 0.0 1002.00 18076.86 19474.91 125.0 223416.0 84.96 86.38 1.0 1044.00 0.21 1.07 0.0 26.68

T(0) 49.69 123.29 0.0 1002.00 22392.20 23398.09 250.0 271352.0 106.12 106.36 2.0 1268.00 0.15 1.00 0.0 26.68

T(1) 49.54 123.24 0.0 1002.00 25483.59 25960.63 250.0 329490.0 100.21 97.68 2.0 1260.00 0.15 0.99 0.0 26.68

T(5) 49.48 123.54 0.0 1002.00 36624.22 32931.17 250.0 307125.0 85.35 72.73 2.0 720.00 0.14 0.99 0.0 26.68

Graphite

DS 50.92 116.47 0.0 770.00 6712.60 6219.47 125.0 51549.5 30.63 27.94 1.0 238.00 0.41 1.38 0.0 22.88

OR* 54.27 123.59 0.0 770.00 7216.18 6587.65 125.0 72855.0 33.92 30.36 1.0 340.00 0.30 1.39 0.0 29.28

T(0) 52.81 125.29 0.0 770.00 8950.24 8287.19 125.0 89024.0 42.20 38.47 1.0 416.00 0.26 1.41 0.0 29.28

T(1) 52.99 125.43 0.0 770.00 10401.94 9381.74 125.0 87820.0 40.35 35.84 1.0 350.00 0.26 1.40 0.0 29.28

T(5) 52.91 125.40 0.0 770.00 15434.66 13357.23 125.0 87452.0 34.48 28.82 1.0 208.00 0.25 1.41 0.0 29.35

Orion

DS 72.27 132.62 0.0 782.67 6284.59 6930.93 125.0 70165.0 28.07 30.69 1.0 291.25 0.54 2.10 0.0 66.24

OR* 70.34 136.79 0.0 782.67 6763.39 7551.15 125.0 67003.0 31.84 34.79 1.0 302.00 0.41 2.04 0.0 63.95

T(0) 67.23 139.61 0.0 782.67 8996.35 9892.78 250.0 146727.0 42.41 45.92 2.0 687.00 0.30 1.47 0.0 34.19

T(1) 67.14 139.48 0.0 782.67 10081.97 10864.42 220.0 108591.0 38.95 40.81 1.0 356.00 0.30 1.47 0.0 34.19

T(5) 67.39 139.76 0.0 782.67 14104.64 15307.39 220.0 125931.0 30.69 33.36 1.0 295.00 0.30 1.47 0.0 34.19

Taurus

DS 48.31 106.29 0.0 1149.00 16513.70 12811.54 125.0 134672.0 72.53 54.15 1.0 584.00 0.30 1.48 0.0 28.54

OR* 53.60 113.04 0.0 1149.00 13747.39 12307.84 125.0 194121.0 62.43 53.19 1.0 904.00 0.29 1.46 0.0 29.51

T(0) 49.99 114.82 0.0 1149.00 17441.70 14984.53 375.0 264884.0 82.10 68.27 3.0 1236.00 0.22 1.45 0.0 29.51

T(1) 50.02 114.75 0.0 1149.00 19664.81 16836.47 375.0 271768.0 76.56 63.23 3.0 1032.00 0.22 1.44 0.0 28.72

T(5) 50.23 115.25 0.0 1149.00 28714.38 22920.56 375.0 256368.0 65.29 49.51 2.0 612.00 0.22 1.44 0.0 29.12

Not surprisingly, all timeout policies presents a similar
stretch time because they do not deliberately delay the jobs.
The minor differences observed are due to the time required
to turn on and off the nodes. This behaviour can also be
seen on the delay time, there is a very slight different
between these policies. In almost all traces the averaged
delay time is smaller on the DeepShutdown results. It was
better than the OR* policy, which indicates that its strategy
did not force the jobs to wait for too long periods after
violating the defined QoS. In other words, it is trying to
minimise the downside effect of an OR approach.

The standard deviation and the range of the values are
considerably high. Furthermore, the values observed for each
trace are very different and cannot be compared. This means
the workloads can drastically change within distinct clusters
and days, reinforcing what was already observed on Legrand
et al. (2019).

6 Discussion

This section analyses what DeepShutdown has learned. We
present the characteristics of the most delayed jobs and
compare them to the OR and Timeout (0) policies. Moreover,
we provide information about the convergence behaviour of
DeepShutdown.

6.1 What is DeepShutdown doing?

The idea of an OR approach is to explore the workload
properties in order to save energy by delaying some jobs.

Specifically, we want the algorithm to delay the
sequential jobs which may cause unnecessary boot ups.
In order to validate this idea, we first analyse the
slowdown of the jobs as function of its inter-arrival time.
Figure 7 shows the slowdown of each trace on distinct groups
of jobs.

A logarithmic transformation was performed on the
slowdown to reduce the effect of outliers and the jobs are
grouped based on their inter-arrival time. DeepShutdown is
compared to OR* to check how close its behaviour is from a
OR approach. Owing the same reason, we compare it with
the Timeout (0) to check how close it is from a pure
shutdown strategy. We can note DeepShutdown exhibits
almost the highest range of slowdown values in every job
group. The slowdown is considerably higher on jobs with a
small inter-arrival time but it eventually diminishes with the
increase in the inter-arrival time. This means that the
DeepShutdown is indeed favouring the delay of sequential
jobs, so its behaviour is closer to an OR approach. The same
can also be observed for the OR* policy, which validates
this insight.

Just delaying the sequential job is inefficient to
guarantee higher energy savings. On one hand, if the job
executes for a long period, then there is no gain in forcing
the delay of the next job in the queue. On the other hand, if
it exhibits a small processing time than the extra delay may
pays off. We analysed the actual processing time of the
most delayed jobs on each trace. The resulting analysis is
presented in Figure 8. The actual processing time is
normalised by a logarithmic transformation.

602 L.C. Casagrande et al.

Figure 7 Slowdown comparative of distinct job groups on each trace

Figure 8 Current processing time of the top 10k jobs with highest slowdown values

DeepShutdown is mostly delaying the jobs with a small
processing time when compared to the Timeout (0) policy.
This behaviour becomes more evident on the Orion traces
that exhibits the best energy savings achieved by DS.
Delaying jobs with small processing times minimise the
number of boot ups while increasing the energy savings. This
indicates that DeepShutdown is indeed exploring the
workload properties to identify the sequential jobs with small
processing times.

6.2 The convergence behaviour

We analyse the performance of DeepShutdown during the
training phase to understand its convergence behaviour.
Figure 9 illustrates the learning curves for each trace. Each
value is an average of 100 experiments of all workloads from
the training set and the score is defined in equation (3). We
showed the averaged scores of the policies with the highest
energy savings to compare performance over time along with
a policy that reserve nodes by random.

 Don’t hurry be green 603

Figure 9 Learning curve

As expected, the performance of DeepShutdown improves
with the number of iterations. On the beginning it shows very
low performance and its behaviour is similar to the random
policy. When it starts to interact the environment its
performance starts to improve. On the smallest clusters, in
number of resources (Graphite and Orion), DeepShutdown
exhibits the best performance after 100–250 iterations. On
their other hand, with bigger platform sizes (Econome and
Taurus) it took more iterations to learn a policy which give
results close to the OR* policy. This happens due to the fact
of the state space increasing with the platform size, therefore
the exploration is faster on cluster with a small number of
resources.

The same variation observed on Table 3 is also observed
in the learning curves by analysing the variation of the scores.
This indicates that identifying sequential jobs with small
processing times is not a straightforward task. Besides
exhibiting a similar frequency of sequential jobs, each
experiment (called episode in a RL setting) considerably
differs from each other.

7 Related work

The power efficiency of computing platforms started to
become a concern in the 2000s. The performance-at-any-cost
paradigm is neither sustainable nor environmentally friendly
(Feng and Cameron, 2007). Since then there is a broad range
of studies focusing on different strategies. A few namely:
fine-grained power management (Etinski et al., 2012;
Marzolla and Mirandola, 2013); coarse-grained power
management (Dutot et al., 2017); job scheduling (Feller et al.,
2011); and thermal management (Sarood and Kale, 2011).

Earlier studies on shutdown strategies started on 2001.
Using a load distribution algorithm it was possible to save

energy by concentrating the load on fewer nodes and
switching-off the remaining ones (Pinheiro et al., 2001). In a
similar way, Chase et al. (2001) used an economic framework
and a greedy algorithm to dynamically adapt the number of
active resources to the demand. It concentrates the load on the
minimal active set of resources in order to save energy. Both
approaches are similar to ours since they adapt the number of
active resources based on the load to increase the possibilities
in energy savings. However, they did not consider the
transition costs for switching resources between on and off.

Considering the transition cost, is important due to the
time and energy required for switching a resource. Moreover,
a resource cannot be used while switching between states.
Thus, from this perspective, ERIDIS (Orgerie and Lefèvre,
2011) works at the platform level and decides whether a
resource must be turned off based on workload predictions.
The prediction part relies on averaged values of past
inactivity periods and feedback given by the differences
observed from the predictions and the real values. In a similar
way, the Inertial Shutdown algorithm (Poquet, 2017, p.85)
adopts an OR approach to dynamically adjust the number of
active resources based on estimations of the unresponsiveness
variation. This unresponsiveness is an estimation of the
required amount of time to compute the pending load in the
queue. When the unresponsiveness is increasing the algorithm
switches some resources on otherwise it will turn them off.
Both approaches use predictions to decides when resources
must be turned off. The main difference to our approach is
that we use DRL to train an agent to deal with the shutdown
of resources. The prediction part is done at the agent and is
inferred from the experiences observed during the training
phase.

Several other studies used RL for resource management
(Galstyan et al., 2004; Moghadam and Babamir, 2018;
Wu et al., 2011; Zhang and Dietterich, 1995; Zomaya et al.,

604 L.C. Casagrande et al.

1998). Moreover, DRL is an extension of RL methods that
uses DL methods to deal with complex tasks. Its main
adoption comes from the recent breakthroughs achieved with
DRL techniques (Mnih et al., 2015) leading to questions
about its performance when dealing with resource
management problems. With this in mind, DeepRM (Mao et
al., 2016) is an attempt to build agents that learn to schedule
in order to minimise the slowdown. It uses a similar method
called REINFORCE but its objective and environment model
(MDP formulation) differ from ours. Exemplifying, it
summarises the platform by using a matrix of RxT , where
R is the number of resources and T is the time window. The
idea is similar to a Gantt chart and each job in the queue is
also represented by this matrix. Moreover, the evaluation is
conducted using synthetic workloads while we use traces
from a real grid system. DRL-Cloud (Cheng et al., 2018) is
another DRL approach to minimise the energy cost in cloud
computing. It uses a value-based method named DQN to deal
with the resource provisioning and task scheduling. Both
cloud workloads and environment model greatly differs from
the models we adopted in this work. In grid platforms, a node
is commonly not allowable to be shared among different
users while in cloud computing virtual machines from distinct
users can be hosted on the same node. Therefore, further
comparisons cannot be made.

Liu et al. (2017) proposed a hierarchical approach
combining RL methods in different levels to deal with the
resource allocation and the power management. At the
highest level it uses an auto-encoder to extract a lower-
dimensional input representation and a DQN to allocate
resources. In the local tier an LSTM network is trained to
predict the next job inter-arrival time to be used by a Q-
learning agent in the control of local servers. The main
difference is that they combined the prediction part with a RL
agent to determine the idling time before a resource is turned-
off while we adopted an end-to-end solution with DRL.
Moreover, our proposal controls a computing platform
instead of just a local server.

8 Considerations and future work

Energy consumption is a key metric related to the
sustainability of a data centre infrastructure. The increasing in
size and complexity of computing platforms requires
sophisticated solutions to improve resource utilisation
efficiency. Performance-at-any-cost is no longer wanted.
Dynamic power management procedures take advantage of
periods when resources are underutilised or unused to save
energy. Idle resources represent a waste of energy since they
are serving neither the users nor the providers. Such waste
cannot be neglected and different strategies must be deployed
to decrease the operational costs.

This paper explores a suite of shutdown strategies. We
clarify the main disadvantage of deploying a pure shutdown
policy and we propose an alternative that employs an OR

approach. This allows the solution to exploit the workload to
identify jobs that can be delayed in order to save energy.
Keeping this in mind, we leverage the power of DRL to teach
an agent how to perform these tasks. The proposed method,
named DeepShutdown, was able to learn how and when
to reserve some resources and turn them off in order to
increase the energy savings. Results revealed it had a similar
behaviour when compared to an oracle-based OR policy. Jobs
with small processing times are the most delayed ones. The
energy savings become more evident when compared with
different rule-based shutdown policies.

Motivated by the lack of such tools we developed a suite
of environments which can be used to train agents with RL
methods on different resource management tasks. The
environment, named GridGym, is an extension of Batsim that
leverages the OpenAI framework to handle the peculiarities
of such methods. Although there is a good range of rule-
based solutions available, there is still room to be explored by
adaptive solutions on the exploitation of the workloads
patterns for better efficiency. GridGym is a step forward that
can facilitate the experiments and the training process.

Applying DRL on resource management procedures is
feasible but there is still work to be done. First, we must
conduct experiments on traces from other grid platforms. We
showed that the proportion of sequential jobs is considerably
high on traces observed from the GRID’5000, but questions
remain if this behaviour can also be seen on other platforms.
Another point to be explored is the development of the
reward function. Different metrics can also be considered to
guide the algorithm. Finally, we must integrate the scheduling
problem onto the DeepShutdown environment to verify if it
can even surpass the performance achieved when using an
external scheduling policy.

Acknowledgements

This study was supported by FAPESC, UDESC and LabP2D
(see https://labp2d.joinville.udesc.br). Experiments presented
in this paper were carried out using the GRID’5000 testbed,
supported by a scientific interest group hosted by Inria and
including CNRS, RENATER and several Universities as well
as other organisations (see https://www.grid5000.fr).

References

Bates, N., Ghatikar, G., Abdulla, G., Koenig, G.A., Bhalachandra,
S., Sheikhalishahi, M., Patki, T., Rountree, B. and Poole, S.
(2015) ‘Electrical grid and supercomputing centers: an
investigative analysis of emerging opportunities and
challenges’, Informatik-Spektrum, Vol. 38, No. 2, pp.111–127.

Benoit, A., Lefèvre, L., Orgerie, A.C. and Raïs, I. (2018) ‘Reducing
the energy consumption of large-scale computing systems
through combined shutdown policies with multiple constraints’,
The International Journal of High Performance Computing
Applications, Vol. 32, No. 1, pp.176–188. Doi:
10.1177/1094342017714530.

 Don’t hurry be green 605

Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot,
E., Jegou, Y., Lanteri, S., Leduc, J., Melab, N., Mornet, G.,
Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, E.G. and
Touche, I. (2006) ‘Grid’5000: a large scale and highly
reconfigurable experimental grid testbed’, The International
Journal of High Performance Computing Applications, Vol. 20,
No. 4, pp.481–494. Doi: 10.1177/1094342006070078.

Borghesi, A., Collina, F., Lombardi, M., Milano, M. and Benini, L.
(2015) ‘Power capping in high performance computing
systems’, in Pesant, G. (Ed.): Principles and Practice of
Constraint Programming, Springer International Publishing,
Cham, pp.524–540.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J. nad Zaremba, W. (2016) ‘Openai gym’, arXiv
Preprint ArXiv:1606.01540.

Carastan-Santos, D., Yokoingawa De Camargo, R., Trystram, D. and
Zrigui, S. (2019) ‘One can only gain by replacing easy
backfilling: a simple scheduling policies case study’,
Proceedings of the 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), IEEE,
Cyprus.

Casanova, H., Giersch, A., Legrand, A., Quinson, M. and Suter, F.
(2014) ‘Versatile, scalable, and accurate simulation of
distributed applications and platforms’, Journal of Parallel and
Distributed Computing, Vol. 74, No. 10, pp.2899–2917.

Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M. and Doyle,
R.P. (2001) ‘Managing energy and server resources in hosting
centers’, ACM SIGOPS Operating Systems Review, Vol. 35,
No. 5, pp.103–116.

Cheng, M., Li, J. and Nazarian, S. (2018) ‘Drl-cloud: deep
reinforcement learning-based resource provisioning and task
scheduling for cloud service providers’, Proceedings of the
23rd Asia and South Pacific Design Automation Conference,
IEEE Press, pp.129–134.

DAS-4 Overview (n.d.) DAS-4: The distributed asci supercomputer
4. Available online at: https://www.cs.vu.nl/das4/home.shtml

Dayarathna, M., Wen, Y. and Fan, R. (2016) ‘Data center energy
consumption modeling: a survey’, IEEE Communications
Surveys and Tutorials, Vol. 18, No. 1, pp.732–794.

Dutot, P., Georgiou, Y., Glesser, D., Lefevre, L., Poquet, M. and
Rais, I. (2017) ‘Towards energy budget control in HPC’,
Proceedings of the 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID),
pp.381–390. Doi: 10.1109/CCGRID.2017.16.

Dutot, P.F., Mercier, M., Poquet, M. and Richard, O. (2015) Batsim:
a realistic language-independent resources and jobs
management systems simulator’, Job Scheduling Strategies for
Parallel Processing, Springer, pp.178–197.

Etinski, M., Corbalan, J., Labarta, J. and Valero, M. (2012)
‘Understanding the future of energy-performance trade-off via
dvfs in hpc environments’, Journal of Parallel and
Distributed Computing, Vol. 72, No. 4, pp.579–590. Doi:
10.1016/j.jpdc.2012.01.006.

Feitelson, D.G. and Rudolph, L. (1998) ‘Metrics and benchmarking
for parallel job scheduling’, Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, Springer,
pp.1–24.

Feller, E., Rilling, L. and Morin, C. (2011) ‘Energy-aware ant colony
based workload placement in clouds’, Proceedings of the
IEEE/ACM 12th International Conference on Grid Computing,
IEEE Computer Society, Washington, DC, USA, pp.26–33.
Doi: 10.1109/Grid.2011.13.

Feng, W. and Cameron, K. (2007) ‘The green500 list: encouraging
sustainable supercomputing’, Computer, Vol. 40, No. 12,
pp.50–55. Doi: 10.1109/MC.2007.445.

Foster, I., Zhao, Y., Raicu, I. and Lu, S. (2008) ‘Cloud computing
and grid computing 360-degree compared’, Grid Computing
Environments Workshop, IEEE, pp.1–10.

Galizia, A. and Quarati, A. (2012) ‘Job allocation strategies for
energy-aware and efficient grid infrastructures’, Journal of
Systems and Software, Vol. 85, No. 7, pp.1588–1606. Doi:
10.1016/j.jss.2012.01.050.

Galstyan, A., Czajkowski, K. and Lerman, K. (2004)
‘Resource allocation in the grid using reinforcement
learning’, Proceedings of the 3rd International
Joint Conference on Autonomous Agents and
Multiagent Systems, IEEE Computer Society, Vol. 3,
pp.1314–1315.

Hikita, J., Hirano, A. and Nakashima, H. (2008) ‘Saving 200kw and
200 k/year by power-aware job/machine scheduling’, IEEE
International Symposium on Parallel and Distributed
Processing, IEEE, pp.1–8.

Hinz, M., Koslovski, G.P., Miers, C.C., Pilla, L.L. and Pillon, M.A.
(2018) ‘A cost model for IAAS clouds based on virtual
machine energy consumption’, Journal of Grid Computing,
Vol. 16, No. 3, pp.493–512. Doi: 10.1007/s10723-018-9440-8.

Huang, S. and Feng, W. (2009) ‘Energy-efficient cluster computing
via accurate workload characterization’, Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, pp.68–75. Doi: 10.1109/CCGRID.2009.88.

Kingma, D.P. and Ba, J. (2014) ‘Adam: a method for stochastic
optimization’, arXiv preprint arXiv:1412.6980.

Kintsakis, A.M., Psomopoulos, F.E. and Mitkas, P.A. (2019)
‘Reinforcement learning based scheduling in a
workflow management system’, Engineering Applications of
Artificial Intelligence, Vol. 81, pp.94–106. Doi:
10.1016/j.engappai.2019.02.013.

Legrand, A., Trustram, D. and Zrigui, S. (2019) ‘Adapting batch
scheduling to workload characteristics: what can we expect
from online learning?’, Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pp.686–695. Doi: 10.1109/IPDPS.2019.00077.

Liu, N., Li, Z., Xu, J., Xu, Z., Lin, S., Qiu, Q., Tang, J. and Wang,
Y. (2017) ‘A hierarchical framework of cloud resource
allocation and power management using deep reinforcement
learning’, Proceedings of the IEEE 37th International
Conference on Distributed Computing Systems (ICDCS),
IEEE, pp.372–382.

Mao, H., Alizadeh, M., Menache, I. and Kandula, S. (2016)
‘Resource management with deep reinforcement learning’,
Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, ACM, pp.50–56.

Marzolla, M. and Mirandola, R. (2013) ‘Dynamic power
management for QoS-aware applications’, Sustainable
Computing: Informatics and Systems, Vol. 3, No. 4,
pp.231–248. Doi: 10.1016/j.suscom.2013.02.001.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.
and Ostrovski, G. et al. (2015) ‘Human-level control
through deep reinforcement learning’, Nature, Vol. 518,
pp.529–533.

Moghadam, M.H. and Babamir, S.M. (2018) ‘Makespan reduction
for dynamic workloads in cluster-based data grids using
reinforcement-learning based scheduling’, Journal of
Computational Science, Vol. 24, pp.402–412.

Nesmachnow, S., Dorronsoro, B., Pecero, J.E. and Bouvry, P. (2013)
‘Energy-aware scheduling on multicore heterogeneous grid
computing systems’, Journal of Grid Computing, Vol. 11,
No. 4, pp.653–680. Doi: 10.1007/s10723-013-9258-3.

606 L.C. Casagrande et al.

Orgerie, A., Lefèvre, L. and Gelas, J. (2008) ‘Save watts in your
grid: Green strategies for energy-aware framework in large
scale distributed systems’, Proceedings of the 14th IEEE
International Conference on Parallel and Distributed Systems,
pp.171–178. Doi: 10.1109/ICPADS.2008.97.

Orgerie, A.C. and Lefèvre, L. (2011) ‘ERIDIS: energy-efficient
reservation infrastructure for large-scale distributed systems’,
Parallel Processing Letters, Vol. 21, No. 2, pp.133–154.
Available online at: https://hal.inria.fr/ensl-00618594

Orgerie, A.C., Assuncao, M.D. and Lefèvre, L. (2014) ‘A survey on
techniques for improving the energy efficiency of large-scale
distributed systems’, ACM Computing Surveys (CSUR),
Vol. 46, No. 4, pp.1–31.

Orhean, A.I., Pop, F. and Raicu, I. (2018) ‘New scheduling approach
using reinforcement learning for heterogeneous distributed
systems’, Proceedings of the Journal of Parallel and
Distributed Computing, Vol. 117, pp.292–302. Doi:
10.1016/j.jpdc.2017.05.001.

Pinheiro, E., Bianchini, R., Carrera, E.V. and Heath, T. (2001) ‘Load
balancing and unbalancing for power and performance in cluster-
based systems’, Proceedings of the 2nd Workshop on Compilers
and Operating Systems for Low Power, : Barcelona, Spain.

Poquet, M. (2017) Simulation Approach for Resource Management,
Theses, Université Grenoble Alpes. Available online at:
https://tel.archives-ouvertes.fr/tel-01757245

Primet, P.V.B., Anhalt, F. and Koslovski, G. (2009) ‘Exploring the
virtual infrastructure service concept in Grid’5000’,
Proceedings of the 20th ITC Specialist Seminar on Network
Virtualization, Hoi An, Vietnam.

Raïs, I., Orgerie, A.C. and Quinson, M. (2016) ‘Impact of shutdown
techniques for energy-efficient cloud data centers’, in Carretero,
J. Garcia-Blas, J., Ko, R.K., Mueller, P. and Nakano, K. (Eds):
Algorithms and Architectures for Parallel Processing, Springer
International Publishing, Cham, pp.203–210.

Raïs, I., Orgerie, A.C., Quinson, M. and Lefèvre, L. (2018)
‘Quantifying the impact of shutdown techniques for energy-
efficient data centers’, Concurrency and Computation: Practice
and Experience, Vol. 30, No. 17. Doi: 10.1002/cpe.4471.

Sarood, O. and Kale, L.V. (2011) ‘A ‘cool’ load balancer for parallel
applications’, Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp.1–11.

Schulman, J., Moritz, P., Levine, S., Jordan, M. and Abbeel, P.
(2015) ‘High-dimensional continuous control using generalized
advantage estimation’, arXiv preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O.
(2017) ‘Proximal policy optimization algorithms’, arXiv
preprint arXiv:1707.06347.

Shi, L., Zhang, Z. and Robertazzi, T. (2017) ‘Energy-aware
scheduling of embarrassingly parallel jobs and resource
allocation in cloud’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 28, No. 6, pp.1607–1620. Doi:
10.1109/TPDS.2016.2625254.

Sun, D., Zhang, G., Yang, S., Zheng, W., Khan, S.U. and Li, K.
(2015) ‘Re-stream: real-time and energy-efficient resource
scheduling in big data stream computing environments’,
Information Sciences, Energy Efficient Data, Services and
Memory Management in Big Data Information Systems,
Vol. 319, pp.92–112. Doi: 10.1016/j.ins.2015.03.027.

Sutton, R.S., Barto, A.G. and Williams, R.J. (1992) ‘Reinforcement
learning is direct adaptive optimal control’, IEEE Control
Systems, Vol. 12, No. 2, pp.19–22.

Tarplee, K.M., Friese, R., Maciejewski, A.A., Siegel, H.J. and
Chong, E.K.P. (2016) ‘Energy and makespan tradeoffs in
heterogeneous computing systems using efficient linear
programming techniques’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 27, No. 6, pp.1633–1646.
Doi: 10.1109/TPDS.2015.2456020.

Terzopoulos, G. and Karatza, H. (2013) ‘Performance evaluation and
energy consumption of a real-time heterogeneous grid system
using DVS and DPM’, Simulation Modelling Practice and
Theory, Vol. 36, pp.33–43. Doi: 10.1016/j.simpat.2013.04.006.

Wu, J., Xu, X., Zhang, P. and Liu, C. (2011) ‘A novel multi-agent
reinforcement learning approach for job scheduling in grid
computing’, Future Generation Computer Systems, Vol. 27,
No. 5, pp.430–439.

Young, B.D., Apodaca, J., Briceño, L.D., Smith, J., Pasricha, S.,
Maciejewski, A.A., Siegel, H.J., Khemka, B., Bahirat, S.,
Ramirez, A. and Zou, Y. (2013) ‘Deadline and energy
constrained dynamic resource allocation in a heterogeneous
computing environment’, The Journal of Supercomputing,
Vol. 63, No. 2, pp.326–347. Doi: 10.1007/s11227-012-0740-7.

Zhang, W. and Dietterich, T.G. (1995) ‘A reinforcement
learning approach to job-shop scheduling’, IJCAI, Vol. 95,
pp.1114–1120.

Zomaya, A.Y., Clements, M. and Olariu, S. (1998) ‘A framework
for reinforcement-based scheduling in parallel processor
systems’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 9, No. 3, pp.249–260.

Notes

1 The GRID’5000 is a testbed for experiment-driven research
with more than 12,000 cores grouped in 31 homogeneous
clusters which are geographically distributed in
8 sites on France. More information can be found in
https://www.grid5000.fr/w/Grid5000:Home

2 The hardware information about each cluster is available on
www.grid5000.fr/w/Hardware

3 Batsim simulates the behaviour of a RJMS over the
SimGrid, which simulates a computing platform. See
https://batsim.readthedocs.io/en/latest/

4 Information available on https://www.grid5000.fr/w/
Hardware

