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Summary
Cloud providers have introduced the on-demand provisioning of virtual infrastruc-
tures (VIs) to deliver virtual networks of computing resources as a service. By
combining network and computing virtualization, providers allow traffic isolation
between hosted VIs. Taking advantage of this opportunity, tenants have deployed
private VIs with application-optimized network topologies to increase quality of
experience of final users. One of the main open challenges in this scenario is the
allocation of physical resources to host VIs in accordance with quality of service
computing (eg, virtual CPUs and memory) and network requirements (guaranteed
bandwidth and specific network topology). Moreover, a VI can be allocated any-
where atop a network datacenter, and because of its NP-hard complexity, the search
for optimal solutions has a limited applicability in cloud providers as requesting users
seek an immediate response. The present work proposes an algorithm to accomplish
the VI allocation by applying tree-based heuristics to reduce the search space, per-
forming a joint allocation of computing and network resources. So as to accomplish
this goal, the mechanism includes a strategy to convert physical and virtual graphs to
trees, which later are pruned by a grouped accounting algorithm. These innovations
reduce the number of comparisons required to allocate a VI. Experimental results
indicate that the proposed algorithm finds an allocation on feasible time for different
cloud scenarios and VI topologies, while maintaining a high acceptance rate and a
moderate physical infrastructure fragmentation.
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1 INTRODUCTION

Cloud computing comes at various shapes and flavors.
Providers have delivered different layers of information tech-
nology (IT) infrastructures as dynamically provisioned ser-
vices following a pay-as-you-go model. Specifically, Infras-
tructure as a Service (IaaS) and Network as a Service
providers offer virtual machines (VMs), routers, and virtual
networks as services, composing dynamically provisioned
virtual infrastructures (VIs). This combination of cloud com-
puting and cloud networking allows the creation of entirely
virtualized infrastructures atop a network datacenter.1 Basi-
cally, a VI is a fully virtualized infrastructure that appears to
be physical but in reality shares the underlying substrate with
other VIs during a given time frame.2 By renting only the

resources that they need, when they need, users can reduce
their costs with IT infrastructure as they no longer need to
spend on buying and managing their own servers. In fact,
more and more companies have opted to outsource their IT
infrastructure to cloud providers.3

Cloud applications performance can critically depend on
the underlying network, and without mechanisms to strict
network reservation, the execution is subject to high varia-
tions. Even in short periods, the bandwidth available to an
application can differ by a factor of 5 or more.4 In the
same vein, Persico et al5 highlighted that network allocation
strategies can heavily impact the performance of applica-
tions hosted on public cloud providers. Although some VM
instance types have a fixed CPU performance and dedicated
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devices, the virtual network interconnection is still a determi-
nant for cloud applications performance.

With VIs, the requesting user is granted full control over
the aggregation of IT and network resources and is kept aside
from management and maintenance of physical resources.6,7

Several projects and companies have studied mechanisms to
create, allocate, deploy, and manage VIs, exploring technolo-
gies such as virtualization of machines, links, switches, and
routers for composing and providing isolated VIs. Indeed, for
delivering VIs, providers must allocate* physical resources
to host the virtual objects that constitute the VI.8,9 Formally,
VIs and network datacenter can be seen as graphs: The ver-
tices denote routers, switches, VMs, and servers while the
edges represent the communication links. From this angle, the
provider must find a mapping between virtual and physical
graphs. This task belongs to the set of NP-hard problems as
other problems already proven to be in this set may be reduced
to it.10

Specialized literature comprises approaches to find embed-
ding solutions.11–15 Although effective in their fields, they
mostly solve the allocation of virtual networks (Virtual Net-
work Embedding [VNE]), ignoring the existence of VMs.
Even considering the allocation of physical resources for host-
ing VIs as a graph formulation, there is a specialization of
datacenter vertices functionality that must be addressed. A
physical candidate for hosting a virtual switch or router must
have forwarding functionality (a traditional VNE scenario)
while candidates for hosting VMs have specific attributes
(e.g., CPU and memory). Such functionalities are usually
represented as vertices and edges attributes specified by
tenants.16 As traditional VNE approaches focus on alloca-
tion of virtual networks atop networking equipment (router
and switches), the number of hosting candidates is usually
reduced when faced to a cloud datacenter composed of many
servers.

Virtual Network Embedding–based formulations consist in
finding paths between source-destination pairs respecting the
bandwidth requirements. Although some approaches perform
a joint allocation of vertices and edges, commonly, the loca-
tion of source and destination nodes is known in advance
by the mechanism. Indeed, some proposals have focused on
the allocation of VMs only, without considering the commu-
nication among them.17–19 Moreover, the search for optimal
solutions has limited applicability as cloud tenants need an
immediate response from providers.

Most proposals do not necessarily consider physical and
virtual topologies that represent cloud providers scenarios
(e.g., applications with multitiered architecture, virtual pri-
vate clouds (VPCs), hierarchical network topologies, and
datacenter topology), a limitation that may influence the
acceptance rate of VI requests.20,21 Analysis and simulation
with random network requests (only considering the probabil-
ity of nodes interconnection) limit the scope and decrease the
applicability of such proposals in cloud datacenters. On cloud

*Following the literature, mapping, allocation, and embedding have the same
meaning is this article.

datacenters, a network topology usually has a subset of redun-
dant links 22,23 while virtual requests have topologies guided
by hosted application requirements.24

Focusing on VI allocation atop cloud datacenters with
joint VMs and network requirements, we propose a heuris-
tic having as premise that both graphs (VI and physical) are
represented in the form of trees (the graphs are connected
and acyclic). Following this premise, strategies to reduce
search space by grouping subtrees information are applied,
which consequently accelerates the allocation process. The
mechanism receives a VI request of any virtual topology and
converts it to a tree. Although intuitive and well-studied in
graph theory fields, the conversion of VIs in trees is not a
trivial procedure as the algorithm is not allowed to change
the requested communication pattern. For example, virtual
links requesting quality-of-service parameters must be cor-
rectly allocated and delivered by the provider to respect the
service level agreement (SLA) established with tenants. Suc-
cinctly, a conversion is allowed only if it complies with the
SLA. The conversion of a network datacenter topology in a
tree follows a different approach. As network datacenters are
usually over-provisioned, a temporary simplification of phys-
ical topology can be performed (e.g., hiding redundant links).
However, our mechanism does not impact the resilience as
links are just hidden during the allocation process not being
deactivated. After converting physical and virtual graphs, a
search space reduction is performed by aggregating capacity
information of subtrees. This approach eliminates the need
for a deep search as a capacity summary is available at each
tree element. In brief, the main contributions of this work
are 4-fold†:

• a mechanism to convert VI and network datacenter graphs
in trees,

• an algorithm to reduce the search space by grouping sub-
trees information,

• an online tree-based algorithm to allocate VIs,
• experimental results with common cloud virtual topologies

(hierarchical, multitiered, and VPCs) are discussed.

This paper is organized as follows: Section 2 formalizes the
VIs allocation problem while Section 3 reviews the related
work. Section 4 describes the proposed solution, discussing
the conversion of virtual and physical graphs to trees, and
explaining the proposed algorithm. The experimental anal-
ysis is discussed in Section 5, and Section 6 presents the
conclusions and perspectives.

2 VI ALLOCATION WITH VIRTUAL
MACHINE AND NETWORK REQUIREMENTS

Recent innovations on network management and architectures
have motivated the composition of private and isolated virtual
topologies on cloud datacenters.23 Currently, virtual networks
with quality-of-service requirements can be dynamically

†An earlier version of this paper circulated in Portuguese only.25
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FIGURE 1 Example of a tree-based cloud datacenter hosting 3 virtual infrastructure (VI) requests with specific network topology configurations

composed to interconnect VMs. In cloud management
frameworks, network provisioning is typically achieved via
software-defined network (SDN) techniques26 combined with
traditional network virtualization mechanisms (e.g., virtual
local area networks and multiprotocol label switching).23 In
addition, SDN controllers can be virtualized for sharing band-
width, topology, and forwarding tables. Following this line,
network function virtualization is in early stages of deploy-
ment and is pointed out as a promising approach for creating
virtual network resources (e.g., switch, router, firewall, and
network address translation).27

Through virtualization, cloud providers have abstracted
their network datacenter resources to host isolated virtual
entities belonging to multiple tenants. In this scenario, a sin-
gle physical node (switch or router) can host multiple virtual
entities (n:1 relationship), while a virtual link that connects
2 virtual nodes is mapped onto the path that connects the
physical nodes hosting the virtual ones (n:m relationship).10

Figure 1 depicts a scenario in which 3 VIs are allocated atop
a cloud datacenter. Each tenant requested a VI with specific
network topology, while datacenter is composed of servers
interconnected by a tree-based topology22 (in short, servers
are interconnected by 3 layers of switches—core, aggregation,
and edge). This example shows an arbitrary mapping solu-
tion to indicate that physical servers can host more than one
virtual node, and similarly, physical paths can also host more
than one virtual link (VI requests 2 and 3 share a subset of
physical resources). Each virtual resource requires an amount
of processing, storage, and networking (represented by vir-
tual links) capacities that are provisioned by a cloud provider.
It represents the SLA establishment between providers and
tenants.

A cloud management framework relies on allocation algo-
rithms to efficiently identify physical resources for hosting
VIs. Usually, there are constraints that must be satisfied
during the allocation process to guarantee that the physical
infrastructure is capable of provisioning the requested virtual

resources.8 Indeed, the problem of cloud datacenter resources
allocation to host VIs is a difficult one, both because it is
computational expensive and on account of a wide range of
constraints originating from different tenants and providers.
In fact, the allocation cannot be randomly performed because
of goals that must be achieved. For instance, providers want to
allocate VIs efficiently, maximizing the acceptance rate and
simultaneously minimizing the number of physical resources
involved. Moreover, VIs can be placed anywhere atop a data-
center, but the allocation algorithm should reduce the spread-
ing of virtual resources and the fragmentation of the physical
datacenter, reducing the number of active resources.

On IaaS providers, the number of servers employed for
composing a datacenter appears as a challenging aspect.5

Moreover, VI allocation problem is exacerbated by the multi-
criteria constraints that must be satisfied. A VM may require a
specific configuration of virtual CPUs, memory, and storage
while virtual switches (or even routers) have another set of
configuration such as size of flow table, memory, and process-
ing capacity. Similarly, the physical topology must support the
bandwidth requirements and resilience level required by the
VI. Even a simple packet forwarding between servers requires
a virtual link allocation for accomplishing the SLA. In short,
all paths between physical resources are candidates for host-
ing a virtual link, as source and destination hosts are unknown
in advance.

Formally, the problem of allocating VIs over physical
infrastructures can be described as an extension of the VNE
problem 11,12,28: graph G = (N, E, C) denotes a physical
infrastructure where N is the set of physical nodes (servers,
switches, and routers), E is the set of physical links, and each
server or link is associated with a capacity vector C that indi-
cates the available capacity. Similarly, graph Gv = (Nv, Ev,
Cv) denotes a VI request, where Nv and Ev represent the set of
virtual nodes (VMs, switches, and routers) and virtual links,
respectively, and Cv is the capacity vector of a virtual node or
link. Therefore, the mapping of VIs on the physical resources
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is described as M:Gv→(MN , MP), where MN :ni ∈ Nv→n ∈ N
is a virtual to physical node mapping, and MP:ei ∈ Ev→p ∈
P is the mapping of virtual links over a physical path of P (a
set of all physical paths). Each Gv is allocated considering the
residual capacity of graph G. The residual capacity of a physi-
cal resource is the difference between the original and already
allocated capacity. Finally, a mapping is considered a valid
solution if for all virtual nodes and links, the physical resource
hosting the virtual ones has enough capacity for provision-
ing the requested configuration, or in other words, ∀ni ∈ Nv,
Cv(ni)⩽C(MN(ni)) and ∀ei ∈ Ev,Cv(ei) ⩽ min(C(l),∀l ∈ P).

In addition to delivering the requested capacities for ten-
ants, a cloud provider must reduce the number of active
resources (servers, switches, and links). Moreover, for
communication-intensive applications, the distance between
virtual resources is a critical factor.23 In this sense, we used
the fragmentation metric15 for defining the objective function
of a cloud provider. Fragmentation quantifies the percentage
of active resources of a datacenter that are hosting VIs, fig-
ured by dividing the number of active resources by the total
number of available resources. In this context, finding optimal
solutions for graph-embedding problems with constraints in
nodes and edges is a well-known NP-hard problem. A VI allo-
cation mechanism must simultaneously identify appropriated
physical equipments and paths for hosting VMs, switches, and
links. In this case, searching by optimal solutions is imprac-
ticable as cloud tenants seek an immediate response for VI
provisioning requests.

An intuitive approach is to perform vertices allocation and
subsequently virtual network composition. If performed on
a naive way, a 2-phase mechanism may induces datacenter
underutilization and negatively impact on hosted applica-
tions (a virtual link can spam a long physical path increasing
end-to-end latency). An initial vertices allocation mechanism
to place VMs without considering edges and networking
equipments (switches) can select spread resources placed on
different parts of a cloud datacenter (e.g., blades, racks, zones,
and regions). Although second-phase algorithms can find an
optimal network composition, the final mapping is still sub-
optimal for tenants and providers. Tenants may be subject
to high latency (because of network hops) on internal VMs
communication, which can decrease the hosted application
performance.29 For providers, composing long paths for host-
ing virtual links requires the activation of multiples switches
along the path. Even using SDN technologies, management
of tenants flows is complex as multiple flow-table entries
are required for isolating the VIs.30 These challenges lead to
application of allocation heuristics, as described in the present
paper: a joint allocation of VM and network requirements
can decrease the spread of virtual resources atop a cloud
datacenter.

3 RELATED WORK

Specialized literature comprises several proposals to allo-
cate physical resources to host virtual entities. Most studies
focus on the VNE problem8 while some aims VM placement

on cloud providers. In short, VNE allocates a set of
virtual routers (connected by virtual links) on physical
topologies.10 There are different proposals on solving this
graph-embedding problem, including isomorphism-based
identification, path-splitting methods, multicommodity flow
modeling, and heuristics built on substrate characteristics.
In addition, they have their own objectives and metrics, for
example, maximizing resource use, minimizing the maximum
link load, proposing fault-tolerant maps, and allocating virtual
resources across multiple domains.

In VNE-related literature, Yu et al11 introduced virtual links
splitting over multiple physical paths combined with peri-
odic datacenter rebalancing. The proposal modeled the VNE
as a multicommodity flow problem and highlighted in their
evaluation that the splitting of virtual links can maximize rev-
enue and minimize substrate resource usage. Although their
goal was not the simultaneous allocation of VMs (as proposed
in the present work), the metric used to identify the poten-
tially complex candidates was based on node connectivity
degree and served as a base for comparison with the algorithm
described in Section 4. Lischka and Karl28 proposed an
exhaustive search by isomorphic graphs. The algorithm is
an extension of the vflib graph matching algorithm.31 In this
approach, nodes and links are simultaneously analyzed during
the allocation process, and by limiting the number of physical
hops of a virtual link, the proposal reduced the search space.
However, experimental analysis indicated allocation time in
minutes, a waiting time that is unacceptable for cloud tenants
expectations (our proposal achieves a stable performance with
short allocation time, as discussed in Section 5).

Some approaches have proposed strategies to exclusively
allocate VMs atop virtualized datacenters. They commonly
explore linear programming or heuristics to dynamically
reserve and place VMs on public cloud providers, differentiat-
ing the objective function, as dynamic allocation19 with VMs
migration,17 local capacity extension by borrowing resources
from public cloud,18 optimal welfare,32 and power savings.33

However, the problem is partially solved as virtual networks
are not considered or mapped in different phases. Some
heuristics perform VM mapping and lately a shortest-path
search. By selecting VMs, switches, and links in different
phases, the algorithms perform the allocation in a 2-step pro-
cess, first allocating the nodes and then allocating the links,
solving a shortest path or multicommodity flow problem.
A 2-step approach leads to suboptimal solutions, increasing
the latency between virtual elements and unbalancing the
network datacenter.29 Aiming an efficient map, an alloca-
tion algorithm must consider nodes and links with the same
importance, allocating both simultaneously.12 The algorithm
proposed in Section 4 is aligned with this expectation and
performs a joint allocation of network and VM resources.

Chowdhury et al12 introduced the combined allocation of
virtual routers and links, that is, both are mapped in a sin-
gle step by the algorithm. This innovation led to the inclu-
sion of VMs in the problem formulation and the design of
the algorithm proposed in this paper. With link and node
constraints, the authors formulated the problem as a mixed
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integer program, and the integer constraints were relaxed to
obtain a linear programming. Samuel et al34 extended the for-
mulation to consider the allocation of VIs across multiple
administrative domains that compose the physical substrate.
In complement, Yeow et al35 investigated the VI allocation
considering mechanisms to pool backup nodes so as to
achieve the desired level of reliability together with resource
allocation. However, all proposals tried to relax some con-
straints, later applying heuristics for verifying if mappings
are applicable. Our proposal achieves a combined allocation
of links and nodes on cloud datacenters using well-known
tree-based algorithms (an updated version of Chowdhury et al
mechanism36 is discussed and compared with our proposal in
Section 5.).

The diversity of virtual topologies has not been the tar-
get of most work, which motivated the proposal of Luizelli
et al.20,21 The authors analyzed the impact of different physical
topologies on VNE quality, mainly focusing on rejection rate.
In parallel, Butt et al37 investigated a topology-aware mech-
anism to reconfigure and allocate initially rejected requests.
Following this line, Wang et al14 proposed a solution based
on tree topologies. However, the approach has not consid-
ered the combined allocation of communication resources and
VMs, and virtual requests were limited to tree-based topol-
ogy. Our proposal relies on a tree-based algorithm to perform
the allocation but is not limited to this topology subset (as
discussed in Section 4.1). In complement, Cheng et al13 and
Gong et al38 did not limit the problem formulation for only
tree-based topologies and explored their characteristics to
identify the critical nodes (by degree of connectivity). How-
ever, both formulations discussed a new perspective for VNE
problem, without considering VM placement.

Although our proposal focus is the allocation of VIs,
some partial algorithms and metrics for comparison are
derived from VNE and were considered as guidelines for
developing the formulation and experimental analysis. Thus,
Section 4 proposes an approach to VIs allocation applying
concepts related to trees to decrease the search space and
to find an efficient mapping solution. Experimental analy-
sis performed in Section 5 compares our proposal with a
well-accepted solution36 commonly used as a baseline for
joint resources allocation. The algorithm was selected to be
compared as it has outperformed most VNE heuristics, serv-
ing as base for mixed integer linear programming approaches.

4 A NEW APPROACH FOR VIRTUAL
INFRASTRUCTURE ALLOCATION

This paper proposes an algorithm termed VITreeM (VI
tree–based mapping) for the online allocation of physical
resources to host VIs. VITreeM has as premise that both
graphs, VI request and physical topology, are in the form of
trees. In graph theory, a tree is an undirected graph G that
satisfies the following conditions: (1) G is connected, that
is, there is a path between any 2 vertices of G, and (2) G
has no cycles, specifically, there is only one path between

any 2 vertices of G. This premise is motivated by the cur-
rent use of tree-based topologies in datacenters22 and by
the promising application of polynomial-time algorithms in
allocation process.

However, it is known that the topologies of physical and VIs
are not necessarily specified as trees,21,39 usually breaking the
second condition by the existence of cycles.20 To overcome
this limitation, VITreeM introduces a strategy to convert any
graphs on trees. Afterwards, the mechanism performs a joint
allocation of VMs and network resources considering both
aspects simultaneously. In summary, VITreeM is composed
of (1) an algorithm to convert graphs in trees keeping the
original connectivity requirement between vertices; (2) an
approach to define the starting nodes (the roots of both VI
and datacenter infrastructure trees) for the allocation; (3) a
grouping strategy to simplify the representation of subtrees
and to reduce the search space; and (4) a tree-based allocation
mechanism guided by the objective and constraints defined in
Section 2.

4.1 Converting virtual infrastructures and network
datacenter graphs to trees

Ahead performing an allocation, VITreeM verifies if physi-
cal and virtual graphs are in the form of trees. As the original
graph representing a VI or a datacenter must be connected,
the infringement on tree properties occurs in the existence
of cycles. In this case, VITreeM converts graphs to trees by
removing cycles based on maximum spanning tree (MST). A
spanning tree of a graph G = (N, E, C) is a subgraph T = (NT ,
ET , CT ) that has all properties of a tree and contains all nodes
of G, in other words, NT = N and ET ⊆ E. In weighted graphs,
the MST of G corresponds to the heaviest spanning tree.

For obtaining the MST of a graph, VITreeM applies an
adaptation of the Kruskal algorithm originally developed for
the minimum spanning tree searching.40 Basically, the order
of the edges evaluation was changed by replacing the non-
descending order by a nonascending order. When multiple
MSTs are found, one is arbitrary selected as they are all
equivalents.

On network datacenter graphs, edges not present in the
MST are ignored in mapping process (they are temporary
hidden). However, among all spanning trees obtained, the
MST has the greatest chances of success in hosting because
of implicit maximization of the weights in the selected com-
munication paths. Figure 2 shows an example of a network

FIGURE 2 An example of a maximum spanning tree for a network
datacenter graph
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datacenter graph and the corresponding MST. Throughout the
conversion, edges (d, b), (d, c) were removed to obtain a MST.

However, removing edges that are not included in the MST
(Tv = (NT

v ,ET
v ,CT

v )) of a VI request (a graph Gv = (Nv, Ev,
Cv)) is not acceptable as it disarticulates the virtual topology
structure. To overcome this limitation, we added the weight
of every edge (u, v) ∈ Ev − ET

v to the edges belonging to
the path between u and v of Tv. Figure 3 illustrates the con-
version process applied to an IV: From the original graph,
VITreeM obtains the MST by removing the edges (d, b), (d,
c) ∈ Ev. The weights from these edges are added to the MST
between the source and destination nodes. For example, the
original edge (d, b) is replaced on the MST by d-a-b, and con-
sequently, the edge’s weight ((d, b)∈Ev) is added in the edges
(d, a), (a, b) ∈ ET

v . Finally, the edge (d, b) ∈ Ev is now repre-
sented by path d-a-b in the MST, maintaining the connectivity
between virtual nodes as originally requested.

4.2 Setting the starting node for allocation

The essence of VITreeM comprehends a depth search com-
paring virtual and physical trees, followed by a breadth
inspection when needed. Thus, VITreeM needs to identify
a node of each tree to start the search for an allocation. As
discussed in previous work, 11,38 the starting search point
influences the distribution of virtual resources atop the physi-
cal infrastructure as it guides how the algorithm will conduct
the search for the candidates. In approaches were virtual
links are hosted on physical paths with limited length, set-
ting the starting node is even more complicated as it can
reduce the candidates to a local search.28 When this restric-
tion is not applied, the starting node can impact on final
network load.13,34 Our proposal uses 2 strategies for starting

node selection: identification of center of a tree and search for
the node with largest local resource capacity (LRC)11 (they
are compared in Section 5) .

In graph theory, the eccentricity of a node n from a given
tree is defined as the greatest distance between n and any other
vertex. At the same time, the center of a tree is a node with
the smallest eccentricity and can be achieved by iteratively
removing tree leaves, until only one or two nodes remain.41

Figure 4A illustrates the achievement of the center following
this strategy. Leaves (red) are iteratively removed until the
identification of node c that is the center of the tree (in green).

The LRC metric is used to identify potential complex can-
didates, given by the product of the node u weight and the
sum of all the edge’s weight connected with u (formally,
LRC = C(u) ∗

∑
C(u, v),∀v ∈ NT ∧ (u, v) ∈ ET ).11 The

higher the value of the node’s LRC, the lower the probabil-
ity to allocate it on the leaves of a tree because of its greater
demand for resources. Figure 4B illustrates the LRC calcula-
tion for all nodes on a given tree and, finally, the selection of
the node d due to its higher LRC.

4.3 Grouping subtrees in boxes

One of the main challenges identified in VI allocation is the
resulting combinatorial explosion due to elevated number of
candidates available in cloud datacenters. It is well-known
that the abstraction of physical candidates through grouping
techniques can reduce the number of operations required to
verify if a mapping is feasible.42 VITreeM uses a heuristic,
termed boxes, to group information on branches of a tree
and consequently to reduce the search space. A box contains
a tuple with 3 capacity values (links, servers, and routers)
obtained by the sum of capacities in subtrees rooted at a given

FIGURE 3 The conversion of a virtual infrastructure (VI) graph in a maximum spanning tree
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a

b

FIGURE 4 Identification of the allocation starting node. LRC indicates local resource capacity

FIGURE 5 Example of capabilities grouped on boxes

node. Moreover, a box content may change depending on
observing reference. This dynamic representation is used to
calculate hosting physical paths on multiple directions. With
boxes representation, VITreeM has a notion of all available
resources in a subtree rooted by a particular node without the
need for a deep investigation on the tree.

An example of grouping boxes is presented in Figure 5.
Routers, servers, and links are represented by circles, rectan-
gles, and solid lines, respectively. Capacity boxes are high-
lighted in red while observing nodes are represented by green
vertices. The box of node d viewed from the node b, noted
as (box(b→d)), contains different values from those observed
from node a, (box(a→d)), because they form different sub-
trees. VITreeM has a view of the amount of resources that are
present in a subtree and quantifies the potential for mapping
without exploring all the search space elements.

4.4 Allocating physical resources to host VIs

VITreeM is a combination of all heuristics described above
(the steps are performed in the order they were described).
With focus on online requests, this recursive algorithm allo-
cates VIs individually (VI requests arrive in discrete time
intervals). Pseudocode from Algorithm 1 resumes VITreeM,

which receives as input: (1) a graph G = (N, E, C) represent-
ing the physical infrastructure; (2) a graph Gv = (Nv, Ev, Cv)
denoting the original VI request; (3) a central node nG from
tree T , where T = graph_to_tree(G); (4) a central node nv

from tree Tv, where Tv = graph_to_tree(Gv); (5) a tree T; (6)
a tree Tv; and (7) a map M = (MN , MP) initially empty. If a
solution is found, the algorithm provides a mapping M of Gv

on G, indicating which physical resources were compromised
to host the VI request.

Initially, the algorithm performs an attempt mapping of Tv,
rooted by node nv, on some subtree of T rooted by neighboring
nodes of nG (lines 1-4). For each subtree rooted by neighbors
u of nG, VITreeM compares the box values of nv with the
box information of u. The previous() function indicates the
last allocated candidate or the node itself when the algorithm
starts. The boxes comparison is one of the key points of the
algorithm, since it reduces the search space, avoiding unnec-
essary checking in deep nodes when it is detected that the
subtree nv is not supported by the subtree of u. If the subtree
has enough resources, the algorithm is executed recursively
continuing the mapping (line 3).

If a valid mapping is not found in the process described
above, VITreeM tries to map the virtual node nv on the physi-
cal node nG (lines 5-8). If possible, it carries out the mapping
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of the subtrees rooted by nv on the subtrees rooted by neigh-
boring nodes of nG (lines 9-18). To do so, it creates a set
(identified by candidates) with all possible pairs between
neighbors of nG and neighbors of nv. The order in which the
pairs are selected follows pre-established criteria, such as the
best fit (nodes are sorted in ascending residual capacity order
[the difference between physical and virtual boxes]) and worst
fit (which follows a descending order).

Finally, VITreeM verifies the existence of a valid mapping
to nv neighbors; otherwise, all the mapping performed from
the current call of the algorithm is undone. This algorithm has
an asymptotic complexity of O(n2log(n)) to the best case, in
which the allocation is performed in the first attempt. On the
other hand, the complexity is O(2nlog(n)) for the worst case,
where VITreeM verifies all the mapping possibilities when
there is enough capacity in all singular boxes of the physical
graph to allocate the greatest node in the virtual graph. In this
situation, it is possible that the entire virtual graph does not
fit in the physical graph, and the algorithm will search for
all possibilities. Although the theoretical complexity in the
worst case is exponential, the impact is smoothed by search

space reduction introduced by grouping subtrees information
in boxes.

To illustrate the VITreeM applicability, Figure 6 exempli-
fies a tree-based search for a VI request and a physical infras-
tructure (both trees are in MST form). Initially, Figure 6A
represents the analysis of node a ∈ NT (physical tree T = (NT ,
ET , CT )) and of node v ∈ NT

v from virtual tree Tv =
(NT

v ,ET
v ,CT

v ). By comparing the values of each item of both
boxes, we observe the possibility of allocating Tv on T , as the
values of node a are greater than the values of node v. The
second step (Figure 6B) seeks a neighbor node of a capable
of supporting the box of node v (lines 1-4 of Algorithm 1). By
only comparing the boxes, we conclude that there is no node
in the subtrees (among a neighbors) with enough resources to
support v.

As illustrated in Figure 6C, it is not possible to continue
the allocation by a neighbors. Thus, v is mapped on a (lines
7 and 8 of Algorithm 1). Following this line, the node w ∈
NT

v is mapped on c ∈ NT as any neighbor of c is capable
of hosting w (Figure 6D). The same situation occurs with
the node x ∈ NT

v : It is not possible to move forward on
b ∈ NT neighbors, since they do not have sufficient capac-
ity to allocate it. Consequently, x is mapped on b, leaving
only its neighbors e,f ,g ∈ NT to be allocated (lines 9-18 of
Algorithm 1). Figure 6E depicts the available physical candi-
dates (e, f , g ∈ NT ) while Figure 6F shows the final state of
the allocation.

5 EXPERIMENTAL ANALYSIS

The experimental analysis compares VITreeM with a
well-known mechanism36 proposed to VNE with coordinated
node and link mapping that outperformed existing approaches
from specialized literature. To allocate a virtual network
request, the VNE problem was formulated by Chowdhury
et al as a mixed integer program with relaxed constraints.
The authors relaxed the domain of binary variables (repre-
senting the resources map) to obtain a linear program. The
initial solution with relaxed constraints is used to devise deter-
ministic (DVINE) and randomized (RVINE) algorithms. For
performing the allocation of VIs, the mechanism was lightly
adapted for considering the existence of virtual routers and
VMs (the vertices were decomposed in 2 subsets with spe-
cific constraints). DVINE and RVINE are based on a distance
parameter that limits the number of physical candidates for
hosting a virtual one (it is similar to the starting points dis-
cussed in Section 4.2). We set this parameter with different
values defining a percentage of physical candidates applica-
ble for each virtual element. DVINE and RVINE were solved
using CPLEX optimizer with its default configuration.‡ As
RVINE results are similar or worse than DVINE results for

‡CPLEX Optimizer, available at http://www.ibm.com/software/commerce/
optimization/cplex-optimizer/

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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a b

c d

e f

FIGURE 6 Example of the tree-based allocation using VITreeM

the experimental scenarios analyzed, we opted to not discuss
RVINE results in this section.§

The VITreeM algorithm was implemented in C++ (com-
piled by g++4.8 with the -O2 optimization parameter).¶ For
covering all input parameters, 4 configurations of VITreeM
are compared: the starting node selection (LRC or center)
and the order in which the pairs of candidates are evaluated
(best fit or worst fit). Basically, the former compares meth-
ods to identify the roots of physical and virtual trees, while
the latter guides tree searching. As discussed in Section 4,

§On worse scenarios, RVINE allocated approximately 32% less requests than
DVINE. Although an extensive analysis on RVINE is out of the scope of
this paper, we believe it is related with datacenter topology and dense virtual
requests.
¶The code is available at https://bitbucket.org/ramoncs/VITreeM

the definition of these parameters impacts the performance
of allocation algorithms in general. Table 1 resumes the
algorithms compared in experimental analysis.‖

Following the work of De S Cavalcanti et al,15 physical
network datacenter was based on Cisco 3-layer datacenter
model,22 as exemplified by Figure 1. A simplification of this
datacenter topology was defined as (1) access layer, com-
posed of 4 racks, each containing 12 servers and 1 top-of-rack
switch; (2) aggregation layer with 4 switches; and (3) core
layer with 2 switches. Based on this configuration, we pre-
pared a set of scenarios representing providers with different
infrastructures. Table 2 summarizes the total number of nodes

‖For the investigated scenarios, increasing the maximum distance in both
RVINE and DVINE did not improve the algorithms’ performance and just
affected the execution time.

https://bitbucket.org/ramoncs/VITreeM
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TABLE 1 Algorithms and configurations compared in experimental analysis

Algorithm Parameters and Configuration Label

VITreeM LRC and ascending capacity order LRC | BF

VITreeM LRC and descending capacity order LRC | WF

VITreeM Center node and ascending capacity order CENTER | BF

VITreeM Center node and descending capacity order CENTER | WF

DVINE Up to 30% physical candidates per virtual node (maximum distance = 1) DVINE | 1

DVINE Up to 50% physical candidates per virtual node (maximum distance = 2) DVINE | 2

DVINE Up to 70% physical candidates per virtual node (maximum distance = 3) DVINE | 3

Abbreviations: BF, best fit; DVINE, deterministic; LRC, local resource capacity; WF, worst fit.

TABLE 2 Composition of cloud datacenters based on Cisco 3-layer datacenter model22

Scenario No. of Datacenters No. of Servers No. of Switches Total

SC 1 1 48 10 58

SC 2 3 144 30 174

SC 3 6 288 60 348

SC 4 9 432 90 522

SC 5 12 576 120 696

SC 6 18 864 180 1044

SC 7 24 1152 240 1392

for each scenario, varying from small-scale datacenters (SC
1) to configurations with 1392 physical resources.

For analyzing VITreeM applicability on IaaS providers, 2
VI topologies commonly used in cloud environment were
selected: multitiered and VPCs. Later, a set of hierarchical VI
requests representing virtual research testbeds is analyzed.

• Multitiered VI requests: A large fraction of IaaS ten-
ants request and organize their VMs following a n-layers
topology.24 Usually, the topology is composed of a load
balancer in charge of distributing requests for a set of
web servers, which represents the hosted application logic.
Eventually, web servers search data from database servers.
A possible composition of a multitiered VI request is rep-
resented by VI 1 from Figure 1. In this example, each layer
has a dedicated virtual switch for individually requesting
network quality-of-service parameters. For creating multi-
tiered virtual requests, in addition to virtual switches, each
request was composed of one load balancer, and a set of
web and database servers. The number of VMs for repre-
senting web servers and databases is uniformly distributed
between 50 and 100 (for each subset), while communica-
tion between VMs and switches is represented by virtual
links request.

• Virtual private clouds: Recently, Amazon EC2 introduced
the dynamic provision of VPCs. ** Each VPC is com-
posed of a subset of access point rules (represented as
virtual routers) and a set of VMs (as depicted by VI 2
from Figure 1). In a VPC, VMs are directly connected to
a virtual router, composing a private local network that
is managed by the tenant. On experimental analysis, the

**Available at https://aws.amazon.com/vpc/

number of VMs composing a VPC follows a uniform distri-
bution between 50 and 200 elements. Each subset of VMs
is connected to a virtual router represented by a virtual link
request.

• Hierarchical VI requests: As virtualization has appeared as
a promising technology for evolving the internet, one can
compose a virtual testbed based on virtual switches/routers
for testing new protocols and management tools. This
scenario is represented by a hierarchical VI request (as
depicted by VI 3 from Figure 1). Virtual machines are
interconnected by a set of switches organized in layers
(similarly to a tree-based topology39). For creating an
experimental set of requests, the number of layers is uni-
formly distributed between 2 and 7. Each layer contains 2
to 5 switches except for the last layer, which has between 5
and 10 VMs, all following a uniform distribution.

Following previous work,15,43 virtual requested capacity is
defined as a fraction of total physical capacity: each virtual
router, VM, or virtual link consumes 1% to 10% of a physi-
cal resource (following a uniform distribution). A set of 100
virtual requests is generated and submitted for each physical
scenario described in Table 2. Arriving times are uniformly
distributed up to 150 discrete intervals (a VI remains active
for 30 intervals at most), and the results show sample means
with 95% confidence intervals (given by error bars on graphs
or denoted by ± on tables). All experiments were performed
on an Intel Core i5 with 16-GB RAM.

5.1 Metrics for analysis

The specialized literature uses a set of common metrics
for analyzing the performance and quality of embedding

https://aws.amazon.com/vpc/
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approaches: fragmentation, allocation time, revenue, accep-
tance rate, and load of physical resources (nodes and links).

1. Datacenter fragmentation indicates the percentage of
active resources that are hosting VIs, figured out by divid-
ing the number of active resources by the total number of
available resources.

2. Allocation revenue gives an insight of how much a cloud
provider will gain by accepting a VI request. It is cal-
culated by summing up the requested virtual capacity of
a specific VI (in other words, it is given by the sum of
vertices and edges weights from a virtual graph).

3. The mean runtime to allocate a VI request.
4. Acceptance rate quantifies the percentage of successfully

allocated VIs. At a given interval, it is calculated as a
ratio of allocated VIs to total number of requests analyzed
so far.

5. Load of physical nodes and links represent the percentage
of resources that are used. It is computed by the divi-
sion of the sum of the allocated capacities by the total
capacity, allowing the identification of physical resources
committed in the VIs allocation (and bottlenecks).

Substrate fragmentation and datacenter load (nodes and
links) are related with network performance. When datacenter
is under-provisioned or load is balanced, hosted applications
are not impacted by communication bottlenecks. Ideally, an
allocation mechanism should decrease fragmentation, keep-
ing virtual resources proximity, while controlling substrate
load to avoid bottlenecks. Acceptance rate is influenced by
both load and fragmentation metrics. In short, a well-balanced
datacenter should be capable of hosting more requests faced to
a fragmented one. An analysis of allocation revenue combined
with acceptance rate indicates if the mechanism prioritize
weighted requests (a higher revenue), or light, with a low
revenue. Finally, algorithm’s runtime represents how long
a requesting tenant should wait for the cloud management
framework processing.

5.2 Experimental results

Figures 7, 8, and 9 present the results for multitiered, VPC,
and hierarchical topologies, respectively, executed on scenar-
ios SC 1, SC 2, SC 3, and SC 4. Metrics obtained by executing
VITreeM on large-scale scenarios (SC 5, SC 6, and SC 7)
are shown in Tables 3, 4, and 5. For performing a compari-
son between allocation mechanisms and configurations, each
metric is depicted by an individual graph, in which results are
grouped per physical scenario (from Table 2).

5.2.1 Multitiered VI requests
First, we analyze the acceptance rate of multitiered VI
requests, depicted by Figure 7A and Table 3. For most physi-
cal scenarios, VITreeM with the best-fit candidates ordering
accepted more requests than the DVINE and worst-fit order-
ing (except for SC 7 in which the worst-fit approach obtained

equivalent results). The best-fit candidates selection tends to
consolidate virtual resources on already activated servers as
it only elect idle hosts when residual capacity is not enough
for hosting the virtual request. This impact is observed on
fragmentation (Figure 7C) and revenue (Figure 7D) graphics:
Even accepting more requests and consequently obtaining a
higher revenue, VITreeM achieves a datacenter fragmentation
equivalent to DVINE.

Virtual machines composing multitiered VI requests are
interconnected by a set of virtual links (as depicted by VI 1
from Figure 1), composing a virtual topology without com-
munication cycles. In this sense, the graph to tree conversion
proposed by VITreeM is not required. While DVINE has con-
sistent nodes and links loads even scaling out the datacenter
(Figure 7E and F), it was unable to use the remaining capac-
ity for hosting more virtual requests. In fact, DVINE tends to
spread virtual resources atop a datacenter faced to VITreeM,
as highlighted by a combined revenue and fragmentation
analysis: even allocating more virtual requests, VITreeM has
a resulting fragmentation comparable with that of DVINE,
indicating a datacenter consolidation.

Specifically for large-scale scenarios (SC 5 to SC 7), VIT-
reeM with the best-fit ordering achieved 100% of acceptance
rate. For each scenario, the selection of a starting node based
on LRC or central node of a tree resulted in equivalent met-
rics. Consistently, VITreeM with the worst-fit ordering used
more physical network resources for hosting the same subset
of virtual requests. For instance, on SC 7, both approaches
obtained 100% of acceptance rate, although the worst fit used
3 times more networking resources for hosting a set of virtual
requests with equivalent revenue.

Considering the allocation time, VITreeM with the best-fit
ordering and central node searching has obtained results
similar to those of DVINE (Figure 7B). Specifically for mul-
titiered requests, the average allocation time of CENTER | BF
configuration on a large-scale datacenter (SC 7) was approx-
imately 19.28 seconds, while for small datacenters (SC 1 to
SC 4), it was less than 4 seconds.

5.2.2 VPC requests
Virtual private clouds–based virtual requests (exemplified by
VI 2 from Figure 1) are composed of a set of VMs intercon-
nected by a virtual router. Internal connectivity requirements
between VMs are expressed as virtual links. Consequently,
VPC has no cycles. However, different from multitiered
requests, the number of virtual links connected to a single
point is increased, composing a large-scale star topology.

Results for VPC requests are presented in Figure 8
and Table 4. Even on small-scale datacenters (SC 2),
VITreeM accepted almost all submitted requests, while
DVINE allocated approximately 64% requests at most (SC 4,
Figure 8A). For this scenario, the best-fit and worst-fit selec-
tion approaches obtained high acceptance rate independently
of starting node selection.
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FIGURE 7 Simulation results for multitiered virtual infrastructure requests allocated by VITreeM (LRC, CENTER, BF, and WF) and DVINE (1, 2, and 3)
configurations (from Table 1). BF indicates best fit; DVINE, deterministic; LRC, local resource capacity; WF, worst fit

a b c

d e f

FIGURE 8 Simulation results for VPC-based requests allocated by VITreeM (LRC, CENTER, BF, and WF) and DVINE (1, 2, and 3) configurations (from
Table 1). BF indicates best fit; DVINE, deterministic; LRC, local resource capacity; VPC, virtual private cloud; WF, worst fit

Considering revenue and fragmentation metrics, DVINE
obtained a low revenue (Figure 8D) even activating more
links and servers on a datacenter (Figure 8C). Although
nodes and links loads (Figure 8E and F) indicate that a con-
siderable residual capacity is available for hosting virtual
resources, DVINE opts for hosting a unique VM per server
on its formulation.36 Consequently, VPC requests submitted
to DVINE are limited by the number of available resources.
In practice, physical resource consolidation is not applied for
online allocations (individual VI request).

For each scenario with 100% of acceptance rate, VIT-
reeM configurations obtained equivalent numbers. Indeed,

a considerable difference is observed on link load as the
worst-fit approach tends to spread resources atop a data-
center requiring the provisioning of long paths for hosting
virtual links.

The average allocation time of VITreeM for VPC-based
requests atop a large-scale scenario (SC 7) was approximately
17.86 seconds using the best-fit ordering and central node
approach. Although for VITreeM the number of physical can-
didates to host a VI is directly related to allocation time, an
exponential growing is not observed on large-scale scenarios
(SC 5 to SC 7), highlighting the candidates prune performed
by grouping boxes.
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FIGURE 9 Simulation results for hierarchical virtual infrastructure requests allocated by VITreeM (LRC, CENTER, BF, and WF) and DVINE (1, 2, and 3)
configurations (from Table 1). BF indicates best fit; DVINE, deterministic; LRC, local resource capacity; WF, worst fit

TABLE 3 Results for multitiered VI requests submitted to scenarios 5, 6, and 7

SC 5 SC 6 SC 7
LRC CENTER LRC CENTER LRC CENTER

BF WF BF WF BF WF BF WF BF WF BF WF

Acceptance rate, % 100.0 84.92 100.0 90.28 100.0 99.31 100.0 97.14 100.0 100.0 100.0 100.0

± ± ± ± ± ± ± ± ± ± ± ±

0.0 0.73 0.0 0.51 0.0 0.17 0.0 0.24 0.0 0.0 0.0 0.0

Allocation time, s 4.89 86.48 6.18 81.08 9.59 163.96 6.01 102.86 16.14 258.61 19.28 221.7

± ± ± ± ± ± ± ± ± ± ± ±

0.07 1.21 0.07 1.5 0.06 3.77 0.05 1.34 0.14 2.65 0.16 2.58

Fragmentation, % 19.08 61.4 18.67 62.48 12.04 52.4 12.05 49.34 8.47 40.47 8.4 40.5

± ± ± ± ± ± ± ± ± ± ± ±

1.1 2.05 1.07 2.36 0.69 2.09 0.65 2.03 0.5 1.73 0.49 1.94

Revenue 1303.0 973.0 1303.0 1154.0 1303.0 1237.0 1303.0 1261.0 1303.0 1303.0 1303.0 1303.0

± ± ± ± ± ± ± ± ± ± ± ±

23.68 82.04 23.68 59.02 23.68 43.75 23.68 38.72 23.68 23.68 23.68 23.68

Link load, % 10.01 25.66 10.16 26.62 6.03 20.63 6.16 20.28 4.1 14.88 4.16 14.88

± ± ± ± ± ± ± ± ± ± ± ±

0.59 1.19 0.59 1.3 0.36 1.14 0.37 1.1 0.24 0.84 0.25 0.84

Node load, % 13.52 10.4 13.52 10.78 9.02 8.67 9.02 8.57 6.76 6.76 6.76 6.76

± ± ± ± ± ± ± ± ± ± ± ±

0.78 0.48 0.78 0.52 0.52 0.47 0.52 0.48 0.39 0.39 0.39 0.39

Abbreviations: BF, best fit; VI, virtual infrastructure; LRC, local resource capacity; WF, worst fit.

5.2.3 Hierarchical VI requests
Hierarchical requests were composed to submit a set of
VI topologies with cycles. As illustrated by VI 3 from
Figure 1, hierarchical requests are composed of virtual
resources organized in layers. In this sense, network-
ing cycles are always present, regardless of the num-
ber of VMs and switches. Therefore, before allocating a
hierarchical request, VITreeM must perform a graph to
tree conversion.

VITreeM and DVINE results for hierarchical VI requests
are shown in Figure 9 and Table 5. For this subset of requests,
DVINE obtained a higher acceptance rate than VITreeM
(Figure 9A). Notably, even increasing the datacenter scale
from SC 3 to SC 4, VITreeM accepted approximately half of
submitted requests, at most, while DVINE achieved 100%. A
combined analysis of fragmentation, revenue, and load met-
rics indicates that VITreeM allocated small-sized requests
even though the load of nodes was extremely low (Figure 9F).
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TABLE 4 Results for VPC requests submitted to scenarios 5, 6, and 7

SC 5 SC 6 SC 7
LRC CENTER LRC CENTER LRC CENTER

BF WF BF WF BF WF BF WF BF WF BF WF

Acceptance rate, % 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

± ± ± ± ± ± ± ± ± ± ± ±

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Allocation time, s 4.79 5.71 5.65 5.09 10.58 13.95 12.06 11.97 19.99 24.23 17.86 24.77

± ± ± ± ± ± ± ± ± ± ± ±

0.13 0.23 0.07 0.14 0.14 0.44 0.13 0.59 0.32 0.86 0.2 0.88

Fragmentation, % 11.33 32.08 11.43 30.88 7.15 21.13 7.2 21.79 5.08 16.03 5.08 16.3

± ± ± ± ± ± ± ± ± ± ± ±

0.53 1.31 0.53 1.19 0.34 0.89 0.34 1.02 0.24 0.67 0.23 0.66

Revenue 2113.0 2113.0 2113.0 2113.0 2113.0 2113.0 2113.0 2113.0 2113.0 2113.0 2113.0 2113.0

± ± ± ± ± ± ± ± ± ± ± ±

97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4

Link load, % 7.41 18.43 7.51 19.91 4.43 13.24 4.47 13.46 3.04 9.44 3.1 9.78

± ± ± ± ± ± ± ± ± ± ± ±

0.35 0.81 0.34 0.87 0.21 0.59 0.21 0.65 0.14 0.44 0.14 0.43

Node load, % 10.18 10.18 10.18 10.18 6.79 6.79 6.79 6.79 5.09 5.09 5.09 5.09

± ± ± ± ± ± ± ± ± ± ± ±

0.48 0.48 0.48 0.48 0.32 0.32 0.32 0.32 0.24 0.24 0.24 0.24

Abbreviations: BF, best fit; LRC, local resource capacity; VPC, virtual private cloud; WF, worst fit.

TABLE 5 Results for hierarchical VI requests submitted to scenarios 5, 6, and 7

SC 5 SC 6 SC 7
LRC CENTER LRC CENTER LRC CENTER

BF WF BF WF BF WF BF WF BF WF BF WF

Acceptance rate, % 52.5 50.32 52.5 50.29 52.5 51.68 52.5 51.68 52.5 51.68 52.5 51.68

± ± ± ± ± ± ± ± ± ± ± ±

1.1 1.18 1.1 1.19 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12

Allocation time, s 9.17 23.46 106.03 27.45 28.71 59.89 437.02 68.96 90.95 166.08 1087.91 172.02

± ± ± ± ± ± ± ± ± ± ± ±

0.39 0.93 9.46 1.23 1.35 2.93 39.94 3.21 4.91 9.79 93.03 9.45

Fragmentation, % 15.4 30.27 15.79 29.08 10.71 23.47 10.87 23.79 8.22 17.98 7.56 18.7

± ± ± ± ± ± ± ± ± ± ± ±

0.65 1.05 0.68 0.96 0.5 0.97 0.48 1.02 0.38 0.77 0.36 0.79

Revenue 122.0 110.0 122.0 107.0 122.0 115.0 122.0 115.0 122.0 115.0 122.0 115.0

± ± ± ± ± ± ± ± ± ± ± ±

20.69 19.5 20.69 20.17 20.69 20.35 20.69 20.35 20.69 20.35 20.69 20.35

Link load, % 14.06 20.49 13.77 23.21 8.45 14.89 9.08 16.19 6.11 10.74 5.66 12.22

± ± ± ± ± ± ± ± ± ± ± ±

0.75 0.84 0.75 0.96 0.43 0.7 0.48 0.8 0.34 0.52 0.31 0.58

Node load, % 1.0 0.96 1.0 0.91 0.67 0.66 0.67 0.66 0.5 0.49 0.5 0.49

± ± ± ± ± ± ± ± ± ± ± ±

0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.03 0.04 0.03 0.04

Abbreviations: BF, best fit; LRC, local resource capacity; WF, worst fit.

Moreover, an analysis focusing on physical links indi-
cate that VITreeM was unable to use the residual capacity
(Figure 9E). In other words, the conversion of large-scale
VI requests to trees resulted in weighted virtual links. By
moving capacity requirements to guarantee virtual resources
connectivity with quality of service requirements, VITreeM

created virtual links that extrapolated the residual capacity
of some scenarios. Moreover, as VITreeM performed a deep
search on physical tree before rejecting a request, the result-
ing average allocation time for large-scale scenarios (SC 5
to SC 7) pointed out the worst case of asymptotic complex-
ity (as discussed in Section 4.4). Finally, even for large-scale
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scenarios, VITreeM was unable to allocate all submitted
requests (Table 5) consistently, showing high link usage
regardless of the candidates ordering and starting node
configuration.

5.2.4 Discussion and key observations
Coordinated fragmentation and load decreasing leads to
higher acceptance rate. A combined analysis of Figures 7 and
8 and Tables 3 and 4 depicts that the coordinated decreas-
ing of fragmentation and load performed by VITreeM leads
to higher acceptance rate and revenue. Moreover, VITreeM
guided by the best-fit ordering outperformed DVINE and
VITreeM with the worst-fit configuration having the highest
acceptance rate. The use of the best-fit approach for sort-
ing candidates increases the acceptance rate regardless of the
approach used to define the starting node, LRC, or center.

Finally, considering the whole picture, network datacenter
fragmentation induced by VITreeM with LRC and the best-fit
remains nearly to values observed in previous work.15 These
results are justified because of the nature of the algorithm,
which performs the allocation guided by a search in depth in
the tree. The spread of virtual resources usually occurs only
near the leaves. Moreover, VITreeM attempts virtual link allo-
cation over short physical paths, placing VMs and switches
as close as possible.

Tree-based search speedups VI allocation. VITreeM intro-
duced an approach to reduce the number of comparisons
performed on allocation. By grouping data on dynamically
composed boxes, VITreeM avoids deep searching on subtrees.
Figures 7B and 8B and Tables 3 and 4 show that VITreeM
allocates multitiered and VPC requests on acceptable wait-
ing time. In both scenarios, the number of physical candidates
slightly affected allocation time. Indeed, for most scenarios,
VITreeM achieves a stable performance with allocation time
average of less than 5 seconds. Such performance combined
with acceptance rate results indicates the possibility of using
VITreeM in IaaS cloud frameworks, as requesting tenants
would wait a few seconds on average.

Drawbacks of tree-based allocation. From Figure 9 and
Table 5, it is evident that the graph to tree conversion per-
formed by VITreeM decreased the acceptance rate. Albeit
increasing the number of physical candidates, graph to tree
conversion limits the solution space due to virtual link group-
ing to remove cycles.

Perspectives. VITreeM outperformed the algorithm used
as base for comparison in multitiered and VPC VI requests.
However, VITreeM results for hierarchical VI requests have
not followed this line. Thus, as perspective for future work,
the application of path splitting11 on VITreeM can potentially
increase the acceptance rate, as virtual links can be manipu-
lated and decomposed in parallel with the boxes comparison.
Considering the speedup of allocation process, VITreeM is a
prominent candidate for parallelization. Finally, the definition
of a starting point taking into account a global view of physi-
cal resources instead of a local one is a promising approach.38

As subtrees information is already abstracted and represented
in capacity boxes, a global resource capacity identification
can analyze the entire topology, avoiding the introduction of
possible bottlenecks or the creation of virtual links atop long
physical paths.

6 CONCLUSION

Cloud computing is a concept strictly present in services that
are available in the internet. Among the existing services,
the on-demand delivery of VIs (computing and communi-
cation resources) enables the composition of isolated and
time-limited virtual entities, in which users can execute their
applications. Considering management tasks performed by
providers, the allocation of physical resources to host VIs is
a problem belonging to NP-hard class. In this context, this
paper presented VITreeM, a tree-based algorithm to allo-
cate VIs. VITreeM converts graphs (virtual and physical)
to trees and performs the allocation restricting search space
by grouping information. In summary, the main contribu-
tions of this work are 4-fold: (1) a proposal to convert VIs
and network datacenter graphs in trees; (2) an algorithm to
reduce the search space by grouping subtrees information;
(3) an online tree-based algorithm to allocate VIs; and (4)
experimental results with hierarchical, multitiered, and VPC
topologies. Experimental analysis indicated a promising use
of VITreeM in different scenarios as it maintained a low phys-
ical infrastructure fragmentation and load combined with a
high acceptance rate.
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