
SDN4Moodle: an SDN-based Toolset to Enhance
QoS of Moodle Platform

Anderson H. da Silva Marcondes, Charles C. Miers, Maurcio A. Pillon, Guilherme P. Koslovski
Graduate Program in Applied Computing – Santa Catarina State University – Joinville – Brazil
anderson.marcondes@edu.udesc.br, {charles.miers, mauricio.pillon, guilherme.koslovski}@udesc.br

Abstract—Network configuration, performance, and congestion
impact the Quality of Service (QoS) of Moodle Learning Man-
agement System (LMS). Moreover, LMSs composing modules
have different QoS demands for each activity. Upon a network,
they compete for resources with applications for social media,
streaming, chat, cloud file synchronization, games, among others.
Eventually, the network congestion can leave the LMS service un-
available for students and professors. Recently, the popularization
of Software Defined Networks (SDN) revolutionized the network
management. We propose SDN4Moodle, a toolset to increase
the QoS of Moodle services. SDN4Moodle was implemented in
conformity to Moodle’s plugin guidelines, and it is controlled by
internal Moodle events. Each action performed by a Moodle’s
user is dynamically translated into network forwarding rules,
and switches configuration. Our experimental results indicates
SDN4Moodle, an open-source system, efficiently achieves flows
isolation and bandwidth control on shared networks.

Index Terms—SDN, Moodle, QoS, OpenFlow

I. INTRODUCTION

In a traditional network based on TCP/IP protocols stack,
the development of traffic management polices is limited by
the ossification of forwarding resources [1], and consequently
the performance of network-intensive applications are im-
pacted by TCP fairness goal [2], [3]. In other words, when n
flows are sharing a network link, the protocol considers 1/n
a fair fraction for each one [4]. However, in controlled en-
vironments (e.g., clouds, academic, data centers) the fairness-
driven approach is not preferable [5]. Eventually, the execution
of some applications composes an operational bottleneck,
such as data replication, servers’ synchronization, or even
the execution of educational activities (e.g., exams, tutorials,
streaming).

The academic routine is supported by LMS. LMS process
is able to store, and disseminate, educational material to
students and professors [6], [7]. Among the existing LMSs, we
focus on Moodle open-source platform [8]. Approximately 87
thousand sites are officially registered on Moodle, distributed
atop 232 countries, supporting up to 14 million courses and
118 million users [9], [10]. Acting as a content centralizer,
the LMS Moodle is a potential bottleneck in the execution of
educational activities. On a congested network scenario, the
most noticeable problem observed by Moodle users is the slow
loading of web pages while executing educational activities.
Nowadays, with the ever-increasing number of multimedia
applications disputing for networking resources, the eventual
bandwidth reduction performed by the TCP protocol composes
a performance barrier, impacting on throughput, and latency.

The application of QoS rules is a complex task [11] that
commonly requires the administrator intervention to con-
figure switches and routers. Even on infrastructures based
on IntServ [12] or DiffServ [13] standards, QoS rules are
composed up to layer 4, disregarding the application require-
ments and dynamic loads [14]. Although the SDN paradigm
facilitated the network management by decoupling the control
and data planes [11], the technical literature lacks on solutions
to translate Moodle events into forwarding rules.

We claim specific forwarding rules must be prepared to
enhance the performance of Moodle platform, as well as
students and professors experience. These rules can be applied
to each activity according to their demands. SDN is an
elegant and contemporary way to support the claim. It is
precisely in this opportunity our research hypothesis of this
work was based. In short, this work proposes SDN4Moodle,
a toolset to enhance QoS for Moodle platform. Our toolset
considers administrator setting, activity characteristics and
dynamic resources load to provider specific rules for each
Moodle activity. SDN4Moodle is composed of a module
(S4M Monitor) in charge of collecting networking events
for each user, and S4M Agent, a module to store, process,
and translate the events into forwarding rules. SDN4Moodle
follows Moodle design guide and integrates to existing tools as
optional plugins. In turn, SDN switches are configured based
on the OpenFlow protocol [15], specifically, the metric tables
are populated following user-generated events.

The remainder of this paper is organized as follows. Sec-
tion II outlines challenges on enhancing QoS for the LMS
Moodle and summarizes the potential application of SDN
and OpenFlow. Related work is discussed on Section III.
Section IV details the SDN4Moodle toolset, while Section V
presents the experimental evaluation. Final considerations and
perspectives are detailed in Section VI.

II. LITERATURE REVIEW AND MOTIVATION

A. LMS Moodle

Moodle is a web application, in which users interact based
on predefined roles (e.g., administrator, manager, professor,
student). As summarized on Figure 1, users (front-end) ac-
cess the core system through personal devices connected by
network. The database is composed of 250+ tables used to
store administrative and educational data. Focusing on sys-
tems interoperability [16], Moodle has a modular architecture,
composed of a set of plugins, subsystems, and a kernel. This



organization allows the system customization according to
institution requirements without changing its core components.

Fig. 1. Key elements composing the Moodle platform.

Events in Moodle are defined as atomic operations which
describes something that happened during their use (users
actions / administrative processes). In order to capture and
process such data, each plugin must define which events must
be monitored by implementing abstract classes. In the user’s
view, interaction with the Moodle platform is composed of ac-
tivities. Users can do login, logout, exams, downloads, audio,
and video streaming’s. Activities have different characteristics
and resource demands.

B. Network Requirements for LMS Moodle

In traditional networks, each equipment must be configured
to be autonomous in decision making. One of the latent
limitation of such approach is that devices are only able to
interpret data from layer for which they were designed [17].
Information on source and destination ports, application, or
sender environment are not commonly available and analyzed
by traditional networks. Therefore, the enhancement of strate-
gies driven by high-level details is practically unfeasible [15].

Moodle is highly dependent on networking infrastructure
(internal components and users interaction). However, there is
no default plugin to control the communication between LMS
Moodle and network management systems. Natively, Moodle
is unable to report its QoS demand for each specific event or
user activity. All application traffic is treated as a single flow
traveling the network, not allowing the prioritization of user
activities or events.

C. Forwarding Moodle Data on SDN

The SDN has emerged as a flexible approach to program
and manage computer networks, soften the complexity on
configuration, operation and monitoring [18]. Considering the
data plan is composed of packets which must be forwarded
according to rules defined by the control plan, SDN advocates
logical control can be implemented in a separated equipment,
called controller. With the separation of data and control
planes, there are two key aspects which enable the application
of SDN to enhance QoS on Moodle. First and foremost, the
flow-based forwarding abstraction enables the programma-
bility of data plan based on standard Application Program-
ming Interface (API). Secondly, the centralized management
performed by a SDN controller provides full knowledge on
network resources [19].

Natively at the southbound interface between the controller
and switches (e.g., OpenFlow [15]), the definition of for-
warding criteria is limited to headers data from layers 2
to 4. In order to enable forwarding rules based on Moodle
events, it is necessary to explore the northbound interface,
i.e., communication between application and controller. Thus,
Moodle can notify the controller about the beginning and
ending of specific events. A set of events defines a user ac-
tivity, and its requirements (e.g., burst, bandwidth reservation,
tolerated latency). Thus, the controller can create specific QoS
forwarding policies according to each activity.

III. RELATED WORK

Literature comprises work which investigate the use of SDN
to improve the performance of applications in varied contexts
(e.g., multimedia, high performance computing), distinct or
joint acting on northbound and southbound interfaces.

Regarding exclusively to northbound, [20] developed SDN
applications to optimize Hadoop clusters. Multimedia appli-
cations (e.g., YouTube) are already able to improve their
performance by using SDN [21]. The authors implemented a
module to monitor the storage use of videos. This information
is sent to a SDN controller in charge of prioritizing traffic
when the buffer does not contain enough data to support
the execution of a given video quality. Indeed, buffer size
represents the quality experienced by a user. Following this
line, [22] implemented a controller for multimedia delivery
with end-to-end QoS. For the authors, the QoS requirements
are translated as forwarding delay requirements, minimized
through the monitoring of links utilization and reorganization
of forwarding tables.

A joint approach is proposed by [23], defined as a new
network paradigm, the Application Drive Network (ADN),
which provides differentiated on-demand services for appli-
cations. The physical network is sliced into several isolated
logical subnetworks, where each slice has its own topology
and protocol to exclusively serve the hosted application. In
turn, an extended SDN architecture was proposed by [19] to
allow inspection of data beyond layer 4. Packets classified as
table miss (i.e., without corresponding entry in the switch flow-
table) are intercepted between switches and controller. Latter,
it is analyzed and the routing decision happens by querying
an auxiliary table representing the application requirements. In
addition, [24] proposed a network operating system for SDN
guided by the QoS requirements reported during the Service
Level Agreement (SLA) establishment.

In summary, related work indicate a real application’s
performance improvement on SDNs. However, none of the
reviewed papers presented a proposal generic enough to sup-
port LMS Moodle. Therefore, the present work prioritizes the
forwarding of Moodle’s network traffic in a proactive way,
based on internal events, following the ADN proposal [23].
Regarding the interface classification, the proposal from Sec-
tion IV acts exclusively on northbound interface, without
changing the OpenFlow protocol on southbound interface.



IV. SDN FOR MOODLE (SDN4MOODLE)
The execution scenario of SDN4Moodle is presented on

Figure 2. Two users request three different activities (A1,
A2, and A3) through SDN network. On Moodle server, the
S4M Monitor is responsible for monitoring internal events and
for linking a set of events to users’ activities. When interacting
with Moodle, a set of user actions are translated into events,
such as (i) start and end of the sessions; (ii) execution of
exams and assignments; (iii) visualization of courses details;
(iv) visualization of main dashboard; (v) download and upload;
and (vi) video and audio streaming. Once user activity is
identified, S4M Agent builds specific rules and it reconfigures
switches flow tables to enhance QoS for academic users. Then,
each activity has specific QoS demand dynamically adjusted.
A1 and A2, for instance, are requested by the same user but
have distinct QoS requirements. On the other hand, A1 and A3
ask for the same configuration, but are requested by different
users. In order to achieve this configuration, SDN4Moodle
retrieves the network status from SDN controller, identifies
the appropriated bandwidth configuration, and reconfigure all
intermediate switches flow tables.

Fig. 2. Execution scenario and main modules of SDN4Moodle.

Motivated by adherence to available hardware, the Open-
DayLight (ODL) controller (Lithium) was selected to support
the SDN4Moodle. Specifically, using the ODL modules to
discover resources and to enforce rules on switches. In turn, a
private database (MySQL CS v.5.7.20) was developed to store
events and switches configurations. A total of 7 tables stores
the events generated by Moodle and toolset parameterization.

A. Identifying Network Flows from Moodle Activity

In order to identify the Moodle traffic on the SDN network,
it is necessary to inspect the attributes available in the packets
headers. As the specification of OpenFlow protocol is period-
ically improved, SDN4Moodle is based on its version 1.3 the
most widely implemented on commercial devices. An Open-
Flow packet is a tuple consisting of 12 components. Seven
components are analyzed to identify the traffic generated to
and from a Moodle activity: input switch port, IP protocol
(IPv4), source/destination IP addresses, Ethernet type (2048),
and TCP/UDP source/destination ports. As long as for each
user activity it is necessary to register two flow-table entries
on each switch (round trip traffic), the source/destination
addresses consist of the user’s device and the Moodle server
on the way (upload to server), and the opposite in return.

Figure 3 shows an example of Moodle’s flow modeling. For
simplicity sake, each user has only one active activity request,
although multiple activities are supported by SDN4Moodle.

Fig. 3. Example of Moodle user flow identification.

Users 1 and 2 (Figure 3), using NAT, share the same IP
address (200.1.1.1), Consequently, both addresses and source
ports must be identified in order for the SDN controller to be
able to enhance QoS. Due to the source address is the same for
both users, the flows are differentiated by source port (50000,
and 50001). Thus, a flow from Moodle User 1 is identified
as tuple <200.1.1.1, 50000, 202.1.1.1, 80>, while for User
2 is denoted by tuple <200.1.1.1, 50001, 202.1.1.1, 80>. In
addition, User 3 has a distinct IP address, and the flow is
identified by <201.1.1.1, 50000, 202.1.1.1, 80>.

B. S4M Monitor

In the absence of a plugin to capture and store events from
official Moodle’s repository, we developed one to carry out this
task, storing data into Moodle and SDN4Moodle databases.
When a user logs in Moodle, plugin notifies SDN4Moodle
about events through database registers. Thus, SDN4Moodle
sends commands to controller to create flow-table entries for
all switches between user and Moodle server.

The development of S4M Monitor was realized according
to the guidelines for preparing Moodle plugins (version 3.0).
This version of Moodle was chosen as the management API
offers a robust solution to receive all events in a single
monitoring service [25]. Being able to capture Moodle events,
it becomes possible to create forwarding rules in network
devices according to high-level requirements. Therefore, the
application can notify the network of its demands at runtime,
avoiding the network administrator from the configuration of
temporary rules for congestion control. Table I summarizes
events monitored by S4M Monitor.

TABLE I
MOODLE EVENTS MONITORED BY SDN4MOODLE - S4M MONITOR.

Event Description
\core\event\user loggedin User login
\core\event\user loggedout User logoff
\core\event\course viewed Visualization of course homepage
\core\event\dashboard viewed Visualization of Moodle dashboard
\mod page\event\course module viewed Visualization of course page
\mod quiz\event\course module viewed Start of an exam
\mod resource\event\course module viewed Visualization o a multimedia file



C. S4M Agent - QoS Control and Enhancement

S4M Agent focuses on delivering events data from Moodle
to OpenFlow controller. In addition, it also collects the coun-
ters available on each of OpenFlow switches to proactively
calculate forwarding paths based on real-time data. Moreover,
the network administrator can set additional parameters, e.g.,
video characteristics (low, medium, and high network de-
mand), Moodle authentication system, and OpenFlow drivers.

Each flow-table entry is formatted following the ODL API
specification. In short, data sent to switches represent the
combination of events database. For instance, to display a
video, once the corresponding register is detected in database,
a search is started to discover the required bandwidth config-
uration according to the configuration set defined by the ad-
ministrator. The joint information is submitted to the switches
by configuring flow and metric tables.

V. EXPERIMENTAL EVALUATION

A. Method

As main metric for discussion, we analyze the background
bandwidth consumption. The objective is to show that band-
width reservations enforced by SDN4Moodle decreases the
slice of network resources available to other applications, on
benefit of the Moodle users. We ingested the background traf-
fic using iperf v. 2.0 application, configured with bidirectional
traffic. Iperf provides bandwidth consumption reports, so we
inferred Moodle’s consumption by subtracting it from total
network bandwidth. Regarding to student navigation profile,
a set of activities (i.e., text, audio, and video) were selected
to represent a session. The text activity is a multiple-choice
exam, 10 questions with 4 alternatives each, being a question
presented at a time. Audio and video streaming’s’ are directly
displayed in Moodle media player without full buffering in
user’s device. Video file has 10 minutes length (MP4 format),
and 3 types of resolution quality were selected: 720p, 480p,
and 240p. The audio file was extracted from the video one, in
MP3 format, with 192 Kbps. Table II resumes the sequence
of user steps, and monitoring tasks.

TABLE II
STEPS FOR DATA MONITORING EXECUTED FOR EACH MOODLE’S USER.

Step Task
A Start monitoring Moodle’s user network interface
B Start iperf servers and clients
C Moodle login
D Start text event
E End text event
F Start audio activity
G End audio activity
H Start low resolution video streaming
I End low resolution video streaming
J Start medium resolution video streaming
K End medium resolution video streaming
L Start high resolution video streaming
M End high resolution video streaming
N Logoff from Moodle
O End monitoring Moodle’s user network interface
P End iperf servers and clients

Initially (Table II), the user’s network interface is monitored
(A). From this moment, only Moodle traffic is received and
sent over the network interface. Latter, iperf server and clients

are initialized to ingest the background traffic (B). User inter-
action starts on access to login page (C). Upon authentication,
user is taken to list of available courses, selecting the textual
exam (D), and sending responses to server after answering the
last one (E). The user then returns to the course topics.

Next step is to run audio streaming (F), and latter return to
course topic list (representing the end of audio activity) (G).
The same script is followed for displaying videos (H, J, and
L for starting / I, K, and M for ending). Upon completion of
activities, the user logs off (N), ending their interaction with
Moodle. Finally, network interfaces monitoring is stopped (O),
as well as the iperf process (P). For each of these actions, log
files are generated and later used to compose the analysis.

Due to the limited processing capacity of virtualized
switches [26], maximum bandwidth was set at 25 Mbps.
Values above this threshold implies on packet loss. Thus,
bandwidth reservation was performed as follows: 2 Mbps after
login; 4 Mbps for textual exams, audio, and low quality videos;
8 Mbps and 16 Mbps for medium and high quality videos,
respectively.

B. Experimental Scenarios
Four experimental scenarios were defined and are presented

on Figure 4. SDN4Moodle communicates with both OpenFlow
controller (sending actions to create, update and remove flow-
table entries) and Moodle server (receiving events data from
LMS plugin).

(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

Fig. 4. Experimental topologies.

Tables III and IV shows the hosts and switches configura-
tion, respectively.

TABLE III
HOSTS CONFIGURATIONS.

Host CPU RAM
Moodle server AMD Athlon TF-20 1.6 GHz 3.6 GB
Controller AMD Athlon TF-20 1.6 GHz 3.6 GB
SDN4Moodle Intel Core I5 3340m 2.7 GHz 8 GB
Iperf server Intel Atom N2701.6 GHz 1.5 GB
Iperf client Intel Atom N2701.6 GHz 1.5 GB
Moodle user 1 Intel Pentium T43002.1 GHz 3 GB
Moodle user 2 Intel Pentium T43002.1 GHz 3 GB



TABLE IV
SWITCHES CONFIGURATIONS.

Switch Model Interfaces OpenFlow
Root TP-Link TL-WR1043ND 1 Gbps OpenFlow 1.3
Edge 1 Generic 8 interfaces 100 Mbps No
Edge 2 Generic 8 interfaces 100 Mbps No
Management Linksys SE 1500 1 Gbps No

GNU/Linux Ubuntu 16.04 64bits was used for all hosts,
while OpenFlow switches were configured with OpenWRT
and CPqD user-space implementation [27].

1) Scenario 1: First scenario, depicted by Figure 4(a)
comprises of 4 servers interconnected by 3 switches without
the execution of SDN4Moodle. On this baseline scenario,
network topology is saturated by background traffic while
one Moodle’s user access the system and executes a set of
predefined actions (from Table II). These results are used as
a baseline threshold on the comparison with Scenario 3.

2) Scenario 2: The testbed comprises 3 switches and 5
servers (Figure 4(b)) without executing SDN4Moodle. Differ-
ent from Scenario 1, two Moodle’s users access the system and
share the network with background traffic. Results are used as
baseline for comparison with Scenario 4.

3) Scenario 3: SDN4Moodle is enabled to manage the
topology depicted by Figure 4(c). In order to represent a hybrid
scenario, OpenFlow is enabled on root switch understanding
the QoS rules defined by SDN4Moodle, while it is disabled
on edge switches. It is worthwhile to mention the existence
of a management network, parallel to the experimental SDN.
Thus, OpenFlow-aware traffic is denoted by dashed lines while
management data is represented by solid lines.

4) Scenario 4: Scenario 3 is extended by adding a new
Moodle’s user, composing the testbed depicted by Figure 4(d).

C. Results and Discussion

Figures 5, 6, 7, and 8 summarize the bandwidth consump-
tion of background traffic for all scenarios. Each event occur-
rence is marked by a dashed vertical line. Events triggered
before/after user’s interaction were omitted (A, B, O, and P).

1) Scenario 1: Initially, Figure 5 shows the background
traffic consumption without QoS enforcement performed by
SDN4Moodle (topology from Figure 4(a)). The network is
fully occupied by TCP iperf sessions when Moodle’s user is
not actively interacting with the system (events C, and D).

Fig. 5. Scenario 1: background traffic (1 user) without SDN4Moodle control.

Consequently, Moodle’s user perceives delayed responses
from server. The decrease on background bandwidth consump-
tion on events (F, H, J, and L) is attributed to fair sharing
performed by TCP. However, even sharing the bandwidth,

Moodle’s user has no guarantee on minimum configuration.
It is worthwhile to mention, actions translated into short flows
(a few packets at most) [28] the reaction imposed by TCP
congestion control algorithm may not be perceived (e.g., login,
logoff, textual exam).

2) Scenario 2: Two Moodle’s users are simultaneously
sharing and disputing the network resources with background
traffic, without executing SDN4Moodle for controlling the
QoS (Figure 4(b)). On Figure 6, the maximum network
throughput (25 Mbps) was achieved, summing up users traffic
and background TCP flows, mainly on events with burst com-
munication between Moodle’s users and server. Eventually,
outliers are perceived due to the periodicity of data monitoring
(1 s). As expected, this second baseline indicates long term
background TCP flows can dominate the network throughput
disregarding the Moodle’s usage.

Fig. 6. Scenario 2: background traffic (2 users) without SDN4Moodle control.

3) Scenario 3: Using SDN4Moodle to actively enforce
the QoS rules, background traffic is controlled on testbed
depicted by Figure 4(c). Figure 7 compares the traditional
network profile (from Scenario 1, blue line) with SDN4Moodle
enforcement (red line). First observation is the sharp drop on
events in which it is necessary to update the Moodle’s user
rules (mainly in events C, D, E, F, H, I, K, L, and N). This
happens due to the existing limitation on OpenFlow protocol
installed on root switch, which excludes the packet queue
when the metric table is updated. Finally, the comparison
shows that SDN4Moodle accurately performs the bandwidth
reservation, causing the secondary traffic consumption to vary
according to the reservations performed.

Fig. 7. Scenario 3: background traffic (1 user) with and without SDN4Moodle
control.

4) Scenario 4: Figure 8 shows the results with 2 Moodle
users executing on testbed depicted by Figure 4(d)). It is
possible to note as the users execute their activities, the greater
is the decrease of secondary traffic flow. On low-resolution
video presentation (240p, H-I intervals), maximum bandwidth
reached by background traffic was about 17 Mbps, which



corresponds to the total network bandwidth (25 Mbps) minus
the total allocated for Moodle users (4 Mbps for each). On
medium-resolution video presentation (480p, J-K intervals),
maximum secondary traffic was about 9 Mbps, which also
matches bandwidth reservation rules (Section V-A), being 25
Mbps less the 8 Mbps for each user. On high-resolution
video presentation (720p, L-M interval), residual bandwidth
available to secondary traffic would be negative (−7 Mbps),
or in other words, causing the allocation of entire network
congested link to Moodle users, in detriment of the secondary
traffic. Finally, as the main difference between Scenarios 2
and 4, a lowest transfer time of the high-resolution video is
perceived. It is also noticed that not all the available bandwidth
was used, since the sum of the rates of both users was only
about 56% of the total available.

Fig. 8. Scenario 4: Background traffic (2 users) with and without
SDN4Moodle control.

VI. CONSIDERATIONS & FUTURE WORK

We presented SDN4Moodle, a proposal to enhance QoS
for Moodle on SDN-based networks. The QoS enforcement is
performed by reserving bandwidth in execution time, based on
events informed by the LMS. A prototype was implemented, in
order to analyze the feasibility of SDN4Moodle. Two software
modules were developed: a Moodle plugin for collecting the
users events, and a tool for the configuration of flow-table
and metric-table entries in forwarding switches. The prototype
was evaluated in an SDN topology with real physical and
virtualized devices. Each Moodle’s user performed typical
academic activities (e.g., login, exams, audio, and video
streaming) while SDN4Moodle enhance experienced QoS by
allocating predefined bandwidth rules. Our results show not
only the feasibility of SDN4Moodle, but how it is efficient
on the presented scenarios. As future work we highlight the
analysis with robust switches to analyze the scalability of
SDN4Moodle, as well as the development on real academic
network.
Acknowledgments This research was partially supported by
the UDESC and FAPESC, and was developed at the LabP2D.

REFERENCES

[1] M. Handley, “Why the Internet only just works,” BT Technology Journal,
vol. 24, pp. 119–129, July 2006.

[2] V. G. Cerf and R. E. Icahn, “A protocol for packet network intercommu-
nication,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 2, pp. 71–82, 2005.

[3] N. Dukkipati, M. Mathis, Y. Cheng, and M. Ghobadi, “Proportional rate
reduction for tcp,” in Proc. of ACM SIGCOMM Conference on Internet
Measurement 2011, Berlin, Germany, 2011.

[4] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[5] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica, “Faircloud:
Sharing the network in cloud computing,” in Proc. of the 10th ACM
Workshop on Hot Topics in Networks. ACM, 2011, pp. 22:1–22:6.

[6] T. J. McGill and J. E. Klobas, “A task–technology fit view of learning
management system impact,” Computers & Education, vol. 52, no. 2,
pp. 496–508, 2009.

[7] G. D. Bailey, “Wanted: A road map for understanding integrated learning
systems.” Educational Technology, vol. 32, no. 9, pp. 3–9, 1993.

[8] M. Dougiamas and P. Taylor, “Moodle: Using learning communities
to create an open source course management system,” in Proc. of the
EdMedia: World Conf. on Educational Media and Technology, Honolulu,
Hawaii, 2003.

[9] Moodle. (2017) Moodle statistics. [Online]. Available: https://moodle.
net/stats/

[10] M. Ş. Kuran, J. M. Pedersen, and R. Elsner, “Learning management
systems on blended learning courses: An experience-based observation,”
in International Conference on Image Processing and Communications.
Springer, 2017, pp. 141–148.

[11] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[12] R. Braden, D. Clark, and S. Shenker, “RFC 1633 integrated services in
the internet architecture: An overview,” RFC 1633, 1994.

[13] D. Grossman, “New terminology and clarifications for diffserv,” Internet
Requests for Comments, RFC Editor, RFC 3260, April 2002.

[14] J. Babiarz, K. Chan, and F. Baker, “RFC 4594: Configuration Guidelines
for DiffServ Service Classes,” IETF, Tech. Rep., 2006.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[16] A. Brown and G. Wilson, The architecture of open source applications,
volume ii. Kristian Hermansen, 2012, vol. 2.

[17] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT,
and Cloud, 1st ed. Addison-Wesley Professional, 2015.

[18] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop:
an autonomic qos policy enforcement framework for software defined
networks,” in SDN for Future Networks and Services (SDN4FNS),.
IEEE, 2013, pp. 1–7.

[19] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-aware data plane processing in sdn,” in Proc. of the Third
Workshop on Hot Topics in SDN. ACM, 2014, pp. 13–18.

[20] S. Zhao, A. Sydney, and D. Medhi, “Building application-aware network
environments using sdn for optimizing hadoop applications,” in Proc. of
SIGCOMM 2016. ACM, 2016, pp. 583–584.

[21] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “Sdn-
based application-aware networking on the example of youtube video
streaming,” in 2013 Second European Workshop on Software Defined
Networks, Oct 2013, pp. 87–92.

[22] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “Openqos:
An openflow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Signal Inf. Proc.
Association Annual Summit and Conf. (APSIPA ASC), 2012, pp. 1–8.

[23] Y. Wang, D. Lin, C. Li, J. Zhang, P. Liu, C. Hu, and G. Zhang, “Appli-
cation driven network: Providing on-demand services for applications,”
in Proc. of ACM SIGCOMM. ACM, 2016, pp. 617–618.

[24] K. Jeong, J. Kim, and Y.-T. Kim, “Qos-aware network operating system
for software defined networking with generalized openflows,” in Network
Operations and Management Symposium. IEEE, 2012, pp. 1167–1174.

[25] Moodle. (2017) Moodle event 2. [Online]. Available: https://docs.
moodle.org/dev/Event 2

[26] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[27] CPqD, “OpenFlow 1.3 for OpenWRT,” dec 2017, original-date:
2012-07-23T13:08:14Z. [Online]. Available: https://github.com/CPqD/
ofsoftswitch13

[28] M. Noormohammadpour and C. S. Raghavendra, “Datacenter Traffic
Control: Understanding Techniques and Trade-offs,” IEEE Communica-
tions Surveys & Tutorials, dec 2017.


