
The Journal of Systems & Software 180 (2021) 111030

t
b
t
l
a
o
m
a
t
c
m
d
c

g
(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A novel blockchain protocol for selectingmicroservices providers and
auditing contracts✩

Wilton Jaciel Loch a, Guilherme Piêgas Koslovski a,∗, Maurício Aronne Pillon a,
Charles Christian Miers a, Marcelo Pasin b

a Graduate Program in Applied Computing – Santa Catarina State University, Brazil
b University of Neuchâtel (UniNE) – Institut d’informatique, Switzerland

a r t i c l e i n f o

Article history:
Received 28 April 2021
Accepted 10 June 2021
Available online 20 June 2021

MSC:
00-01
99-00

Keywords:
Blockchain
Microservices
Selection
Audit
Protocol
SLA

a b s t r a c t

Software architectures based on containers and microservices are often used to develop and manage
large-scale distributed applications. Still, large vertical deployments spanning over multiple cloud and
edge infrastructures are cumbersome to negotiate for, as each infrastructure provider is usually unique
concerning prices, management strategies and Quality-of-Service (QoS) levels. In this scenario, Service
Level Agreement (SLA) contracts are primarily crafted through pre-established templates and clients
must trust providers to manage provisioned resources. The present paper proposes Dawn, a novel
blockchain protocol for selecting microservice providers and auditing contracts. The protocol exploits
the distributed and verifiable storage of a blockchain, as well as its decentralized consensus to enable
contracts establishments in unreliable environments. Besides providing a formal definition of the
protocol, this work discusses the possible threats to the correct operation of the network, originated by
tenants and providers. We show that Dawn is secure under the evaluated terms, that it can efficiently
help the contract establishment process as well as it guarantees a functional systematic way of auditing
through monitoring. Finally, we studied both best and worst case scenarios regarding the number of
issued messages, stored data volume and network traffic to execute Dawn with different numbers of
clients and providers.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Microservices are a form of software architecture in which
he system is executed by the intercommunication of lightweight
locks implementing very specific functions. This approach, al-
hough considerably simple, is very well suited for constructing
arge-scale distributed systems which can be malleably allocated
top multiple providers. The joint provisioning of microservices
n edge and cloud providers is a revolutionary approach to imple-
ent and deliver complex systems with Quality-of-Service (QoS)
nd Quality-of-Experience (QoE) requirements. Network func-
ion virtualization, data stream processing, adaptive and dynamic
aches are contemporary examples of distributed applications si-
ultaneously hosted by edge and cloud infrastructures. Although
isruptive, the joint scenario is composed of multiple economi-
ally competitive actors. In fact, cloud and edge infrastructures

✩ Editor: J.C. Duenas.
∗ Corresponding author.

E-mail addresses: wilton.loch@edu.udesc.br (W.J. Loch),
uilherme.koslovski@udesc.br (G.P. Koslovski), mauricio.pillon@udesc.br
M.A. Pillon), charles.miers@udesc.br (C.C. Miers), marcelo.pasin@unine.ch
M. Pasin).
ttps://doi.org/10.1016/j.jss.2021.111030
164-1212/© 2021 Elsevier Inc. All rights reserved.
differ on scale, availability of services, provisioning cost, and QoS
management tools (Di Francesco et al., 2019; Tuli et al., 2019).

There is an inherent problem with edge and cloud-based ser-
vice contracts (e.g., Infrastructure as a Service (IaaS), Function as
a Service (FaaS)) in which tenants are unaware of physical hard-
ware details as well as orchestration, and resource sharing poli-
cies. Consequently, they must fully rely on information entirely
collected and made available by service providers (Garcia Lopez
et al., 2015; Rodrigues et al., 2019; Lins et al., 2018). Com-
mon cases of Service Level Agreement (SLA) breakdown caused
by providers are related to inaccurate resource capacity pro-
visioning, especially in terms of processing capacity, available
memory, bandwidth, and response time. The reasons may change
from inefficient scheduling policies of physical resources to inten-
tional overbooking. On the other hand, tenants may act dishon-
estly, accusing providers of negligence in the service provision
and thereby seeking some kind of marketing or legal advan-
tage (Zhang et al., 2016; Shi et al., 2016). Therefore, in the face
of a contractual dispute, it becomes a complex task to correctly
audit, assess and judge which party involved in the contract was
injured and which sought an unlawful benefit.

The present paper presents the design and the analysis of a
novel blockchain protocol which seeks to guarantee transparency

https://doi.org/10.1016/j.jss.2021.111030
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111030&domain=pdf
mailto:wilton.loch@edu.udesc.br
mailto:guilherme.koslovski@udesc.br
mailto:mauricio.pillon@udesc.br
mailto:charles.miers@udesc.br
mailto:marcelo.pasin@unine.ch
https://doi.org/10.1016/j.jss.2021.111030

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

f
w
t
i
p
d
a
d
t
c
a
d
a
c
L
U
t
a
t
d
b
p
b
l
f
c
o
t

(
t
m

v
(

b
m
a
a
t
b
t
n
t
s

r
E
c
c
a
i
n
e
I
i
h
p
a

q
u
T
t
T
i
t
w
j
i

2

t
p
t
a
c
e

n
I
c
m
p
n
d

or transactions and requests between providers and tenants
hen allocating microservices, as well as distributed algorithms
o verify complaints, reward participants who provide correct
nformation and penalize those who do not. The centering of the
roposal around blockchain is justified by its ability to foster a
istributed environment with easy verification of the existence
nd correctness of data. This feature makes it possible to au-
it information on previous and ongoing SLA contracts between
enants and providers, serving as a starting point for the de-
ision making algorithm. The decision procedure is centred on
n asynchronous and distributed voting mechanism based on
ata collected independently by tenants and providers through
trustful monitoring mechanism. Inspired on commonly used e-
ommerce auction and shopping websites (e.g., eBay, Mercado
ibre) as well as ride-sharing and food delivery systems (e.g.,
ber, UberEats), a reputation-based mechanism is used to define
he credibility of users. In short, voting is used to collective infer
bout SLA breaches that are likely to happen, and to recalculate
he reputation accordingly. We further remark that the proposal
oes not simply employs existing blockchain technologies as a
ase on which additional algorithms are built on top. Instead we
ropose a novel form of blockchain network as a whole, whose
oth transactions and validation processes are specifically tai-
ored to the end of providing a contracting and auditing platform
or microservices. Thus, the behaviour and characteristics that we
laim the network to have are intertwined on the very fabric
f the proposal itself, and not achieved solely from pre-existing
echnologies harvest from specialized literature.

The main contributions of the present paper are three-fold:
i) the definition of a unified market for microservices provision
o aid the contracts establishments achieved in a decentralized
anner; (ii) a form of dynamically ranking the involved parties

given by their service quality and network behaviour; and (iii)
a practical auditing process to judge and repay possible SLA
breakdowns.

This manuscript is organized as follows. Section 2 presents the
scenario, actors and problem definition. Section 3 introduces the
protocol, its transactions and the working of each component.
Section 4 shows a reduced practical example of a Dawn, while
Section 5 exposes a broad analysis of possible threats and how
the protocol architecture deals with them. Section 6 presents an
analytical modelling to investigate the theoretical limits of Dawn
on issued messages and data volume. Section 7 discusses the
related work and finally, Section 8 presents our considerations
and future work.

2. Overview

When using classical microservice provisioning, the burden
of service identification and contract establishment is taken by
the client, mostly by contacting providers through conventional
means and by sending the information needed to enact the
service. This process must be executed by the client for each
provider, asynchronously and individually. Negotiations are held
with each provider, without an unified form of service contrac-
tion, let alone having forms of splitting partial requests among
different parties. Fig. 1 depicts the contracting scenario.

Client C1 (Fig. 1) submits a microservice request to providers
P1 and P2. A graph is used to represent the request, in which
nodes denote the microservices, and edges indicate the communi-
cation requirements. Both providers, using distinct protocols offer
proposals (QoS indicators and prices) to the client. Once the client
selects a provider and confirms the service with a signed contract
and SLA, the resource provisioning starts. Given a certain period
of time, SLA violations may occur and in most cases the power
resides exclusively in the hands of the providers. Clients have
no way of challenging these violations and, in some cases, they
cannot even prove it happened.
2

2.1. Main actors

The main actors in a microservices market are summarized in
two groups: tenants and service providers.

Tenants are all participants in the microservices market who
come to search for one or more providers which meet their price
and QoS requirements, as well as reputation standards. A set of
six main actions can be triggered by tenants in the protocol:
(i) submit a properly formatted request for microservices pro-
visioning, detailing all the requirements; (ii) extend an ongoing
request to accept an already received proposal and to revive the
request itself to the network; (iii) commit to a SLA contract with
providers; (iv) call a voting event reporting SLA breakdowns; (v)
ote on ongoing disputes originated by tenants or providers; and
vi) finalize an ongoing provisioned request.

The second group of actors are the Service Providers, including
rokers and providers (cloud and edge). A simplification of two
ain actions was selected to represent this group: (i) to propose
provisioning offer fully or partially attending a tenant’s request;
nd (ii) vote on dispute events originated by service providers and
enants. Each node on the network is personified by a user that
elongs to one of these groups and that controls all the actions
aken in relation to the chain and to other participants. The
odes are then individually maintained by each user which is ei-
her a real world customer, seeking for microservice provisioning
ervices, or a service provider offering its products.
In regard to the blockchain network, any participant may be

eferred only as User, regardless of the original belonging group.
ach user belongs to a single group and has an address that is
onstructed based on the public key, ideally through one way
ryptographic processes like SHA256 or mixes of multiple such
lternatives. We do not deepen the discussion regarding address-
ng as this is mostly an implementation directed issue, which is
ot our focus here. These properties are defined when the user
nters the network and naturally cannot be further modified.
n order to fulfil all of its possible actions, each microservice
nfrastructure broker that wants to take part in the network must
ave two users associated with, responsible for representing both
erspectives (a user with tenant’s profile to contract services and
second one with service provider’s perspective to resell them).
Rather than proposing federating algorithms that would re-

uire changes in the service providers, we propose the broker
ser as an intermediary between tenants and service providers.
his type of user leverages well established software design pat-
erns to cope with the problem of incompatible provision forms.
he complexity of having to deal with different protocols is
solated inside the broker, which in turn is used by many different
enants in a unified way. A similar non-federating layered model
as proposed in past works (Veríssimo et al., 2012), further

ustified by the fact that service providers are often deliberately
ncompatible and chances are that they would remain that way.

.2. Tenants and microservice providers reputation

Many different distributed or web-based services existing
oday keep track of reputation, for customers, providers or sim-
ly peers. Common examples applications are car-sharing, end-
o-end sales and auctions, and marketplaces. Reputation has
lready been proposed as a means for selecting appropriated
loud providers (Comi et al., 2015) and to compose cloud fed-
rations (Mashayekhy et al., 2019).
In this work, reputation represents the efficiency and correct-

ess of resource provisioning within a market of microservices.
n other words, a provider with high reputation delivers the SLA-
ontracted capacity (e.g., processing power, minimum bandwidth,
aximum latency) throughout the provisioning time, with little
erformance fluctuation. Conversely, the user’s reputation de-
otes the correctness and veracity of data provided to resolve
isputes in the market.

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

2

u
a
i
s
u
t
t
m
p

d
i
s
s
b
t
a
m
E
p
A
t
e
t

r
h
l
m
s
A
t
c
i

Fig. 1. A simplified scenario for contracting microservice providers (cloud and edge).
.3. Problem statement

We place our work in an heterogeneous, competitive, and
nreliable scenario composed of cloud and edge providers, ten-
nts, and brokers. Multiple providers, architecturally positioned
n the cloud or on the edges of the Internet, have different prices,
trategies and qualities in their services. We assume that any
ser may misbehave to gain benefits. While providers may want
o overbook requests to increase revenue, clients may disturb
he market to reduce costs. We need a mechanism providing
eans to establish reliable contracts, assisting in the selection of
roviders and offering a protocol to audit them.
Currently, without any federating or brokering service, the

istribution of the negotiation is not automated. Clients must
ndividually contact multiple providers to retrieve their provi-
ion informations such as prices and policies, and to provide
pecific forms of QoS requirements. This form of negotiation,
esides often demanding human interaction, represents a barrier
o the division of a single request amongst multiple providers
nd to the aggregation of their disjoint resources in the deploy-
ent of a physically distributed, but functionally unified job.
xclusively hiring service brokers is a way of mitigating this
roblem, but it just shifts it from the tenants to the brokers.
nother consequence is that there is no direct competition be-
ween providers towards the client’s individual request, since
ach negotiation is individually implemented between pairs of
enants and providers.

Once a contract is established and the job deployed, the SLA
equirements may be missed by the provider. These generally
ave less impact on a microservice architecture than on a mono-
ithic counterpart (Gill and Buyya, 2018), however it can lead to
onetary losses in the same manner, depending on the inten-
ity and the number of affected units (Heorhiadi et al., 2016).
lthough SLA contracts are legal agreements which could be used
o redeem the appropriate restitution when a SLA miss occurs,
lients many times have no concrete way of proving that the miss
n fact happened. Also, often the cost of lawsuits can be much
3

higher than the actual monetary damage caused by the miss,
leaving clients with no means to get repayment. Existing alter-
natives that explore the inverse way (Clack et al., 2016), namely
attaching express legally-enforceable rules from legal documents
over smart contracts still present several challenges before being
useable in real world scenarios.

Clients, on the other hand, can also exhibit dishonest be-
haviour by forging accusations and monitoring data, mostly envi-
sioning rewards via restitution or cost reduction, causing market
disturbance. This turns the process of judging eventual breaks
into a complex task since none of the involved parties can be fully
trusted. As a result of all of the conditions discussed, the present
scenario manifests itself as an untrustful environment in which
distinct actors must interact to achieve a common goal, without
any guarantees of honest behaviour from each other.

3. Protocol

The protocol, termed Dawn, is loosely based on the concept
of transactions from the Bitcoin concept (Nakamoto, 2009). In
the original Bitcoin implementation, they serve as a ledger that
records all users coin transfers, while in Dawn context they allow
a sense of complete and incomplete states. Unreferenced trans-
actions – whose hash have not been listed as source in specific
subsequent transactions – represent processes that have not yet
been completed, such as proposals for a service or openings for
votes, while responding through a new transaction to an anterior
one indicates the end of a previously opened process.

Most of the information exchanged between users and conse-
quently written in the ledger refers purely to contractual details
and monitoring data. Only a small fraction of the total transac-
tions refers to transfers of actual values (reputation, described in
Section 3.1). Dawn’s blockchain data is public, so even users who
have no financial correlation with the system or formally interact
with it can anonymously view transaction and reputation data.

Fig. 2 is used along this paper to illustrate the protocol, trans-
actions, negotiation, and auditing phases. The clients group is

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

r
s
c
i
p
a
i

w
c
s
v
f
i
a
L
a
a

3

i
a
p
t
u
i
a
l
u
e
a
n
a

e
w
n
u
e
t
A
t
a
o
c
a
r
a
p

r
d
c
s
F
o
s
g
T

T
C

epresented by C while the providers group is given by P , re-
pectively. As mentioned before, the broker user employs both
lient and provider forms of interaction, thus this group of users
s actually diluted into the other two and is not individually
resented here. Following the group identifier letter, there is also
n individual numeric identifier used to specify different users
nside the same group of actors.

The protocol combines publicly available data about providers
ith reputation scores calculated by participating users. Dawn
overs the microservices lifecycle from the initial specification
tages, through the establishment of contracts, to the audit and
oting phases. In this sense, the Dawn design is presented as
ollows. Initially, the base algorithm to account users reputation
s described in Section 3.1, while the common attributes of trans-
ctions and the certificate publishing are presented in Section 3.2.
atter, the protocol transactions related to contract negotiations
re presented (Section 3.3), followed by the SLA monitoring and
uditing phase (Section 3.4).

.1. Users reputation

The reputation of users is a key item of the Dawn protocol, as
t is the product of both the successful elaboration of contracts
nd the performance of effective audits on them. As there is no
ossibility for a user to deliberately transfer reputation points
o another, a specific transaction for this is unnecessary. The
sers reputations are constructed through information contained
n other transactions (e.g., requests, voting). The representation
dopted by Dawn is a value that varies from 0 to 100, whose
imits are related to the minimum and maximum possible rep-
tation, respectively. The alternative of using reputation limits,
specially the superior one, is chosen to prevent honest providers
nd brokers from accumulating very high reputation values that
ew ones would not be able to reach, creating a biased, unfair
nd not easily modifiable scenario for selling services.
All users who join the network receive a reputation value

quivalent to 50 points, since it is not possible to judge a priori
hether this user has a tendency towards honest behaviour or
ot, and hence higher or lower value assignments would be
nfair. Latter, a user gains reputation through votes and contract
stablishments, and loses only through the former. The reputa-
ion reward received from contract establishments is constant.
ccording to this rationale, nothing would prevent the sum of
he amounts received by a user to exceed the maximum of the
llowed reputation. To tackle this, Dawn proposes the account
f reputation for a given user based on a simple temporal re-
onstruction of that user’s transaction history on the network
nd not on actual values written on the ledger. Therefore, the
eputation is not a token, but actually an abstract measurement of
ll processes that have already happened throughout that user’s
articipation.
Algorithm 1 represents the pseudocode for building an user’s

eputation, in which r and v denote the reputation and the
efault contract reward, respectively. CCT is the set of contract
ommit transactions already concluded by a user, while RT is the
et that contains all reputation transfers designated to user u.
unctions get_contracts() and get_transfers() search transactions
n the network (first locally, when available), sort_by_timestamp()
orts a transaction set by their timestamps, older first. Finally,
et_value(Ti, u) recovers the reputation transferred to user u on
, if T ∈ RT .
i i

4

Input: public address of user u
Output: reputation value r

1 r = initial_reputation
2 v = default_reward
3 CCT = get_contracts(u)
4 RT = get_transfers(u)
5 CCT = sort_by_timestamp(CCT)
6 RT = sort_by_timestamp(RT)
7 T = sort_by_timestamp(CCT ∪ RT)
8 for Ti ∈ T do
9 if Ti ∈ CCT then

10 r = min(100, r + v)
11 else
12 r = min(100, r + value(Ti, u))
13 end
14 end
15 return r

Algorithm 1: Building the network user’s reputation.

able 1
ommon transactions attributes.
Attribute Description Bytes

Version Transaction version 4
Address Creator user address 33
Signature Used to ensure that the owner of the address is the

true creator of the transaction
70–72

Type Used to differentiate the transactions 1

3.2. Common transactions attributes and certificate publishing

The protocol is composed of 9 different transaction types: Cer-
tificate Publishing (CP), Microservice Request (MR), Request Ex-
tension (RE), Microservice Proposal (MP), Contract Commit (CC),
Voting Call (VC), Vote and Bet (VB), Verdict and Transfers (VT)
and Contract Finalization (CF).

In Dawn, there is a group of attributes which is common for
all transactions, mainly used to identify and verify the author’s
and the transaction’s authenticity, as summarized by Table 1.
The version is used to enable the protocol’s evolution, while the
address field indicates the public address of the transaction’s
creator. The signature is generated by the private key corre-
sponding to the user’s address through asymmetric encryption. In
addition, the signature comprises all the data of the transaction –
including specific fields of the different types further described –
and ensures its authenticity, proving that the transaction’s creator
is the same as the user indicated in the address field. Finally, the
type of the transaction indicates how the rest of the following
variable data should be interpreted.

In addition, Dawn proposes a Certificate Publishing (CP) trans-
action to disseminate to network participants the existence of a
certificate belonging to a given user (who created the transac-
tion). Certificates must be granted by some external and trustful
entity to all users who wish to join as microservice providers
(cloud and edge). The certification is essential to guarantee that
a user is a member of the provider’s group and consequently can
offer and provision microservices, thus preventing the creation of
fake provider accounts.

3.3. Contract negotiations

Microservices negotiation involves the Service Request, Mi-
croservice Proposal, Request Extension, and Contract Commit
transactions. In order to avoid market speculation and network
overload, a limit on the number of active contract negotiations
for a specific user is set.

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

T
M

v
w
t
i
c
n
S
a
b
A
S
e
t
s

3

t
r
a
C

Fig. 2. Execution scenario of Dawn protocol. The data flow to and from the blockchain is orchestrated by the transactions (described on Sections 3.3 and 3.4).
f
(

3

n
r
R
o
i
a
o
t
C
t
t
m

n
M
M
n

3

m

able 2
icroservice Request transaction attributes.
Attribute Description Bytes

Data size Size in bytes used to carry data 4
Data Service description and requirements Variable

3.3.1. Microservice request
The Microservice Request (MR) describes a set of microser-

ices represented by a directed graph (as depicted by Fig. 2),
here nodes represent the microservices and the edges denote
he network dependencies among them. In addition, a vector
s given for each node and edge in the graph denoting the
apacity and Quality-of-Service (QoS) requirements (for instance,
umber of replicas, processing capacity, or minimum bandwidth).
pecific languages or models for representing virtual resources
nd communication requirements are not specified by Dawn,
eing extensible in this sense. Examples are CloudFormation from
mazon (AWS CloudFormation, 2020), Heat for OpenStack (Open-
tack, 2020), and virtual resources modelling languages (Koslovski
t al., 2009). Table 2 summarizes the attributes for a MR transac-
ion (in addition to Table 1 data). The data size field indicates the
ize in bytes to carry the service request (Data attribute).

.3.2. Microservice proposal
Once a MR is stored in the blockchain, MPs can be submit-

ed by providers and brokers. A MP fully or partially fulfils the
equirements for a microservices request. Table 3 presents the
ttributes for a MP transaction. CP hash references a previous
ertificate Publishing transaction that naturally must carry a valid
5

certificate for the creator user. MR/RE hash refers to the re-
quest currently being addressed. In turn, Seed data is required
to perform a possible upcoming voting transaction (detailed in
Section 3.4.4). Pricing policies are based on a predefined indexed
list (e.g., per minute, per hour, etc.), while the price assumes
loating point values (e.g., IEEE 754). Finally, a service provider
cloud or edge) can offer only a subset of microservices requested.

.3.3. Request extension
Accepting a MP is a client decision guided by private eco-

omical and QoS indicators. Moreover, a MP can partially fulfil a
equest. Both aspects motivate the definition of a transaction for
equest Extension (RE). Clients can create a RE to inform which
f the proposals made so far have been chosen for the request,
ndicated by referencing the MP transactions. After the publish of
RE transaction, the effect generated in the network is the revival
f the original request, which happens due to the propagation of
he new transaction, bringing back the attention of the providers.
onsequently, providers can reevaluate the request considering
he evolution of internal data centre load and economical objec-
ives to then possibly send new MPs addressing the remaining
icroservices.
Table 4 presents the RE attributes. MR hash refers to the origi-

al request, while details of the accepted proposals are carried by
Ps hashes. For that reason, new MPs must retrieve the original
R and analyse the MPs already submitted and compromised. A
ew offer must consider only remaining microservices.

.3.4. Contract commit and contract finalization
The commit of a contract negotiation must reference the re-

aining MPs from the last RE or, in its absence, the original

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

t
D
t
a
i
a
o
r

3

u
a
f
a
p

t
p
D
n
e
o

Table 3
Microservice Proposal transaction attributes.
Attribute Description Bytes

CP hash Hash referencing the provider’s certificate 32
MR/RE hash Hash pointing for the corresponding request 32
Encrypted seed A random encrypted value defined by the service provider 32
Price policy An index on a predefined pricing policy list 1
Price The total price to provision the request 4
Number of microservices Identifies if a request is fully or partially provisioned 2
Microservices Identifiers to all microservices that will be provisioned defining the QoS SLA Variable
Table 4
Request Extension transaction attributes.
Attribute Description Bytes

MR hash Hash to point for the corresponding original request 32
Accepted MPs Indicates the number of MPs accepted 2
MPs hashes Pointers to all MPs transactions accepted Variable
MR. This transaction seals the contract between clients and all
providers and their MPs selected in the negotiation so far. Once
a commit is identified in the blockchain, new microservice pro-
posals for the corresponding request or its extension are not
accepted. The effective service provisioning that follows the con-
tract, and its deployment details are not addressed by Dawn.
In summary, the contract commit makes the mapping between
MR and RE to MPs (Table 5). Finally, committed contracts are
atomic entities, which means that all the microservices listed in
the original request must be served by a MP for a contract commit
transaction to be accepted.

The CF transaction, as its name suggests, exists to allow clients
o finish (terminate) their ongoing active contracts. Once again, as
awn does not deal with service deployment or provision itself,
he contracted provider and the client must take the necessary
ctions to finish it. This transaction can only be sent if there
s no existing voting calls for the respective contract, and as it
cts mostly as a collective notification of an ending contract, the
nly individual attribute necessary is the 32 bytes hash of the
espective Contract Commit.

.4. Auditing contracts

The audit phase (blue traced rectangle on Fig. 2) occurs when a
ser suspects that the QoS indicators are not being respected as
greed. The procedure is based on two fundamental pillars, the
irst being the SLA contract and its data stored on the blockchain,
nd the second is a set of monitoring data collected by clients and
roviders.
Dawn is based on trustful monitoring data to audit a con-

ract (detailed in Section 3.4.1). The monitoring of microservice
roviders is external and parallel to blockchain management.
ata collected is kept privately and only a summary is sent when
eeded. These data, although having a theoretical owner and
ventually being shared, should not be interpreted by any actor
ther than each user’s digital wallet – the term digital wallet is

loosely employed and it designates the system which allows users
to interact with the network. Thus, even the monitoring module
owner – user that controls it – cannot understand the data that it
produces or receives, and the empirical coherence of these only
exists in the context of the auditing phase.

A major process performed on audit phase is the transfer of
reputation between users. This phenomenon happens because all
users who want to participate in the voting process (described
in Section 3.4.4) must bet a part of their reputations, which
means that voters are betting on the accuracy and precision
of their own monitoring data. Although a minimum amount is
required for betting, an upper-bound limit is not defined by the

protocol, so it is up to the user to decide how much they want

6

to bet. Consequently, larger bets confer high prizes in case of
assertiveness.

The voting process defined by Dawn is based on the concept
of focal points, which suggests that in coordination games players
tend to take specific common actions if they believe that the
rest of the participants will perform in similar ways. Thus, voting
users tend to act honestly if they believe that other participants
who send votes will do so as well, given that deviations from the
collective good sense are punished by the protocol.

3.4.1. Monitoring module
First and foremost, it is essential to credit the development

and management of such monitoring module to a trustful entity,
responsible for registering users on the network before the sub-
mission of any transaction. In this sense, the monitoring module
is an appendix to each user’s digital wallet, and must be allocated
to the infrastructure contracted by the user to collect data. Peri-
odically, the module executes a set of stress processes to acquire
performance indicators, which are compared to the QoS values
defined on SLA. The monitoring frequency is upfront defined,
and all monitoring modules operate in a standalone fashion and
roughly at the same frequency. At first glance, the comparison
of monitoring data performed on different devices without clock
synchronization may seem inconsistent, but with relatively short
periods of time and presumably similar monitoring contexts it
is unlikely that SLA violations patterns would not be detected in
multiple distributed modules.

The data collected by the monitoring module is stored locally
in the contracted infrastructure and are only sent to the digital
wallet upon an explicit request. The monitoring module has a
pair of private and public asymmetric keys, the private key being
the same for all modules of all users (stored somewhere in the
source code or built secretly within a system of cryptographic
enclaves Vaucher et al., 2018). The purpose of the monitoring
module’s key pair is to ensure the confidentiality of the data it
stores. Thus, even if the data is discovered or copied from the
disk, the attacker would lack the private key, which is known
only by the monitoring module (during execution time). All the
collected data remain stored for a fixed period of time indepen-
dently of whether it has proof of some SLA breakdown or not.
Each individual test performed in the infrastructure has its own
entry on the database alongside with a unique identifier aimed
to prevent reuse of information on votings. The module sends
binary alerts to the user when breakdowns are detected. Upon
data request for a vote, the module does not simply send the
stored encrypted data, which would prevent any user from ever
reading the content. Instead, it translates the information to a
newly created voting key that guarantees that the data will be
secret throughout the audit phase but readable after it ends –
in order to enable the verdict creation. This key pair acts like a
session key and must be different for every voting process.

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

e
s
t
k
c
H
a
m

m
a
b
l
m
u
e
e
a
u

a
a
a
a
a
b
o
c

3

h
T
g
M
i
t
d
t
a

t
i
p
p
v
A
l
b
w
f
t
i
t
i

b

Table 5
Contract Commit transaction attributes.
Attribute Description Bytes

MR/RE hash Hash to point for the corresponding request or extension 32
Accepted MPs Indicates the number of MPs accepted 2
MPs hashes Pointers to all newly accepted MPs Variable
t
r
i
o
t
i
t

s
v
t
l
t
k
i
r

a
d
n

C
t
p
i
u
s
–
c
r
n
A
w
k
p
h

C
n
s

3

V
i
t
c
m
t
a
m
a

i
r
b
a
h
b
v

3.4.2. Voting keys
Since the distribution of rewards to voters is done through the

valuation of the majority’s opinion, the disclosure of voting data
hould be prevented to avoid the creation of fake votes that place
heir creators in a point of greater reputation rewards. The voting
eys, used to address this issue, must be equal to ensure the
onsensus over the clear data of all the different users involved.
owever, since the monitoring modules operate independently
nd have no communication with each other, the key creation
ust be synchronized through other means.
Dawn uses equal random seeds to all the participants, which

ust be fed to the module when a data requisition is made and
re used for the keys’ setup. There are two necessary seeds to
e informed and they determine what could be considered the
anguage of a specific voting process. Then, every user who has
eaningful data to that context can translate it through the mod-
le and join the voting. Both seeds are 32 bytes random values
ncrypted by the module’s public key. The first one must be gen-
rated by the service provider and sent along with the MP trans-
ction, while the second seed must be created by the accusing
ser and sent in a VC transaction (detailed in Section 3.4.4).
Inside the module, both values are decrypted, concatenated

nd then again encrypted by the module’s private key to create
random, unique and not replicable value, which is then used
s the private voting key (the term encrypted is utilized here as
form of shuffling in the original value through the private key,
ny secure encryption method that relies on a vector of bits could
e used). The public key is created through the specific process
f the chosen asymmetric encryption system, whose selection is
onsidered an implementation aspect.

.4.3. Voting process
The voting process, despite mostly focused on the audit phase,

as some important steps that happen also in the contract phase.
he complete process of a vote is displayed in Fig. 3. Initially,
iven a certain time in the blockchain, client C1 decides to send a
R transaction to the network. This action, although not depicted

n the figure, allows provider P1 to send a MP, which besides
he regular contractual information, comprises an encrypted seed
estined to the voting process. The client then, commits the con-
ract and accept P1’s service through a CC transaction (identified
s CC1).
After a service confirmation and the access being granted to

he microservices, the client’s digital wallet inserts a monitor-
ng module instance inside the infrastructure where the service
rovisioning is happening. As time advances, at each monitoring
eriod, the module runs a test in the infrastructure, aiming to
erify the correctness of service availability and QoS indicators.
fter each test, a new encrypted data record is written to the
ocal storage. Executing a given test in time and noticing a SLA
reakdown, the module sends a notification to the C1’s digital
allet informing the occurrence. C1 then, aiming the restitution

rom the break, should start a vote but before, the translation of
he monitoring data to a readable form at the end of the process
s necessary. In order to achieve this, the user searches the chain
o retrieve the encrypted seed from the provider and also creates
ts own, both used for the voting keys construction.

The request for the module data retrieval is then made using
oth the provider’s and the client’s encrypted seeds. In addition,
7

he client’s clear seed is appended to the message. The module,
eceiving the requisition, decrypts both seeds and compares them
ndividually with the clear appended value. In case of a match in
ne of the comparisons, the module assumes that for knowing
he original value, the requesting user intends to start a voting
nstead of creating a vote — once voter users will not have access
o the clear value of any seed.

The module builds the voting keys through the process de-
cribed in Section 3.4.2. The stored data are translated from a
ersion encrypted by the module’s public key to a encryption
hrough the voting private key. A hash is created for the trans-
ated data, signed by the module’s private key and appended to
he response message. The module also appends the voting public
ey capable of decrypting the information, since the requester
s the accusing user, and finally sends the whole set back as a
esponse.

At last, C1 receiving the data removes the voting public key
nd creates a new Voting Call transaction (identified as VC1 and
etailed in Section 3.4.4) so that the network can contribute with
ew data, providing means to properly judge the break.
For the creation of votes to a voting call the process is similar.

2 then, possessing a monitoring module on an equivalent infras-
ructure of the same provider and noticing the publication of the
revious C1’s VC1 transaction, can send a vote. In this case, there
s not necessarily an alert issued by the module and now this
ser must retrieve both the provider’s and the client’s encrypted
eeds from the blockchain. As C2 does not – and is not meant to
know any of the clear seed values, his request to the module is
reated solely with the two fetched encrypted seeds. The module
eceiving this request assumes that as the requesting user does
ot know any clear value, the data requisition must be for a vote.
ll the data translation, hashing and signing occur in the same
ay. However, the response set will not contain the voting public
ey once the requesting user is not one of the parties allowed to
ossess it. The voting user can then use the received data to create
is vote and send it to the network.
After the voting period is closed and to finish the process,

1 sends the VT1 transaction containing the verdict and the key
eeded for the decryption. The same transaction could have been
ent by the accused provider in other cases.

.4.4. Voting call and votes
The start of the audit phase is given by the creation of a

oting Call (VC) transaction. It reveals to the network that an user
dentified a SLA breakdown and wants repayment for the damage
hrough the network judgement. This transaction references the
ommit of the broken contract and informs specifically which
icroservice has been neglected, the violated QoS aspect and

he time period of the following proof data, which also must be
ppended. In case of multiple violations on the same contract,
ultiple VCs should be issued to deal with different individual
spects.
Alongside with the breakdown information, a bet value is

nformed. It serves as a warranty of the supposed accusation ve-
acity and dictates the minimum amount that should be alienated
y any other voting user’s bet. The value sent by any voting user
s a bet has no maximum limit and therefore can be as much as
e deems interesting, being that in case of correctness, greater
ets also receive greater cuts of the remaining final reputation
alue.

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030
Fig. 3. Detailed voting process.
c

Voting calls have yet another important field that is the lock-
time. This value indicates for how many subsequent blocks rel-
ative to the current one (i.e., the block where the transaction
has been written) new votes will be accepted by the network.
In this sense, once the VC transaction is committed in a block x,
all valid votes to that call can be accepted, and therefore written
in the chain, if the current block height is less or equal than
x + locktime. Practically then, this field expresses for how long
the voting process will be open to new votes. Table 6 shows all
the VC transaction fields.

The next transaction type is the Vote and Bet (VB), which can
be sent by any user with meaningful data for a voting context. The
data appended to the vote transaction must have an equal time
period (amount of tests) as the one informed by the accusing user.
All votes have the same weight on the result, independent from
which group the voting user is in. Table 7 indicates all of the vote
transaction fields.

3.4.5. Verdict and transfer of reputation
The last part of the audit phase and hence of a full Dawn cycle

is the construction of the verdict about a contract violation and
the change in the reputation points of the involved users. After
the voting period is over and a certain amount of votes were
received, it is possible to calculate through the supplied data the
probability of a SLA breakdown. The individual data of each user
is used in conjunction to create a verdict that summarizes the
concentric and inductive view of the network about the accused
break. A statistical inference based on the median and standard
deviation is used to judge who is the wrong participant. If the
provider is considered guilty, his minimum bet value is taken
and divided among the accuser and voting users, otherwise the
client loses his/her bet. In the latter case, the value is divided only
among the voting users and not with the accused provider for
security reasons.

As certain users which did not provided assertive or collective
similar data gain less reputation rewards, the ones who did
receive more. This redistribution is based on the median, so the
distance of the individual probability to it determines how much
a user wins or loses. This transaction must be created either by
the accusing client or the accused provider. If both send, the first
one is committed — given it is correct. Alongside the transaction,
also must be sent the voting public key that enables the data
visualization and the verdict verification. There is a time limit to
send this transaction relative to the VC’s locktime.

In order to verify a sent verdict it is only necessary to retrieve
the public key and all the listed votes, decrypt the data and mimic
the verdict execution. If the distribution result obtained is equal
to the one written to the transaction, then it is considered honest
and if the other fields are valid, it can be relayed. The Verdict and
Transfers transaction attributes are listed in Table 8.
 b

8

The reputation transfer vector indicates a value of addition
or subtraction on the total reputation of each user, in the order
of vote reference presented in the fourth field (hashes of the
votes). There is no maximum value that can be received, but the
maximum loss of a given user is naturally his own bet value.

3.4.6. Verdict calculation
In order to distribute the reputation values among the users,

there must be a way to calculate the division based on the users
data. This section proposes one possible way of achieving this
purpose. It is easy to see that Dawn can be extended to more
elaborated and specific proposals (like employing Analysis of
Variance (ANOVA) statistical models) without compromising the
protocol mechanism.

Once all votes are gathered and verified, the violation data
from each vote is extracted, decrypted and individually sorted
in order of supplied percentage, so most severe breaks – when
there is a low percentage of the accorded provision level – appear
first, while the least intense appear in the last positions. This form
of sorting can be applied over the dataset because the intensity
and amount of breaks are analysed in the set as a whole, and not
specifically on the order that these appear. The data dissimilarity
is then calculated between each of the votes and the accusation.
This process is done firstly by extracting all the break records
from the data, while records that do not represent breaks are the
ones with supplied percentage over a certain threshold.

Being qa and qvi the quantity of break records in the accusation
and in a vote respectively, two distinct forms of dissimilarity cal-
culation (D1 and D2 from Eqs. (1) and (2), respectively) are used to
form the final result, in which A is the accusation dataset, and Vi is
the dataset of vote i. Aj and Vik are records from the respective sets
and D1 and D2 are the partial dissimilarity measures. If eventually
qa > qvi, then naturally for D2, records from Vik that do not
represent breaks will be taken into the calculation.

D1(A, Vi, qa, qvi) =

qa∑
j=1

qvi∑
k=1

√
(Aj − Vik)2 (1)

D2(A, Vi, qa, qvi) =

qa∑
j=1

qa∑
k=1

√
(Aj − Vik)2 (2)

Df (A, Vi) =
D1(A, Vi, qa, qvi) + D2(A, Vi, qa, qvi)

2
(3)

Multiple dissimilarity measures are used in this context be-
cause of the distinct ways in which they work. The first, D1,
alculates the dissimilarity of all the breaks in one set with all the
reaks in the other. It is interesting as it does not restrict itself

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

i
o
t
o
a
d
o

t
e
i
t
p
d

t
b

a
r
c
p
c
r
r
t

Table 6
Voting Call transaction attributes.
Attribute Description Bytes

CC hash Hash to point for the corresponding Contract Commit 32
Encrypted seed Encrypted seed to be used in the voting process 32
MP index Accused MP index 2
Microservice index Indicates the Microservice/infrastructure where the breakdown was detected 2
Break aspect Indicates the physical broken aspect 1
Time period The amount of individual tests present in the data 2
Locktime Indicates the voting open time in blocks 1
Minimum bet Contains the value betted by the user which defines the obligatory minimum bet 2
Signature size The size of the following signature 1
Signature Module’s data signature 70–72
Data size Indicates the size of the break proof data in bytes 3
Data Encrypted proof data Variable
Table 7
Vote transaction attributes.
Attribute Description Bytes

VC hash Hash to point for the corresponding Voting Call 32
CC hash Hash to point for the voting user’s Contract Commit 32
Bet Amount of reputation points betted by the user 2
Signature size Size of the module‘s signature 1
Signature Module‘s signature of the data hash 70–72
Data size Indicates the size of the following proof data 3
Encrypted data Contains the data proofing the vote and representing the vote itself Variable
Table 8
Verdict and transfers transaction attributes.
Attribute Description Bytes

VC hash Hash to point for the corresponding Voting Call 32
Voting public key Indicates what is the public key of the current voting 33
Amount of votes Contains the amount of votes received in the voting 2
Hashes of the votes Hashes of all the Vote and Bet transactions received Variable
Transfers Vector containing the reputation change for each involved user Variable
to the amount of breaks pointed by the accusation, taking into
account the different numbers of occurrences informed by both
participants. On the other hand, since in an all-to-all comparison
the summed values scale linearly with the amount of elements,
it may overweight certain measures just by the difference in the
break quantity. Tackling this problem, the second measure D2
s used due to its characteristic of just comparing the number
f occurrences pointed by the accusing user. Thus, in this form
he intensity of the individual breaks have a greater importance
ver break amounts. The two forms are then combined through
simple average of the resulting values (Eq. (3)), assuring the
issimilarity rises as the difference in the amounts and intensity
f the breaks rises as well.
The individual dissimilarity values are calculated for each vote

owards the accusation and the median of the results is consid-
red to be the consensual view of the dissimilarity. The median
s used instead of the mean since the latter is highly susceptible
o big alterations from outliers, which is not interesting for the
resent scenario. In order to generate the verdict, the final me-
ian is compared to a predefined α value of dissimilarity, and if

it is lower then the user is considered victorious, otherwise the
provider is the winner. This α value can be defined empirically or
hrough analyses of the data itself, assigning the correct threshold
ased on the votes and accusation relation.
Aiming to create the reputation distributions, the considered

spects are how much that user has betted and how close his
esults are to the dissimilarity median. The main reward division
omes from the loser user. However, the individual quotient is
ondered in a way that a user loses part of what he/she should re-
eive as reward according to the lack of precision in his data and
eceives a fraction of what other users have lost due to the same
eason. The loss inflicted over an user’s reward is proportional to
he percentage represented by his data deviance in relation to the
9

sum of all voting users deviance. The reward fraction that a user
receives from other users losses is proportional to the percentage
of his bet value in relation to the sum of all bets from voting
users. Hence and ideally, if all the users converge, they equally
receive proportionally to the amount they invested, otherwise the
furthest from the overall consensus the less a user earns.

As the accusing user has no value of dissimilarity associated
with his data, the earnings are just the fractions of other’s losses
and he does not receive a share of the loser reputation divi-
sion. This restriction is set to balance the fact that he cannot
lose reputation due to imprecision. Therefore, being Df the final
dissimilarity between the accusation and a vote; d̃ the median
of all the dissimilarities; Dt the sum of the deviances from the
individual dissimilarities to the median; u the amount of voting
users; v the amount of votes; bi the bet of an user i; bp the bet
of the loser user equivalent to the minimum bet and t the total
reputation of the voting, the distributions are given by Eqs. (4)
to (8).

Dt =

v∑
i=1

Df (A, Vi) − d̃ (4)

Li =

(
bi +

bibp
t − 2bp

)(Df (A, Vi) − d̃
Dt

)
(5)

TRi = bi +
bibp

t − 2bp
− Li (6)

Ri = TRi +

u∑
j=0,i̸=j

Ljbi
(t − bp − bj)

(7)

Ra = ba +

u∑ Ljba
(t − b − b)

(8)

i=0 p j

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

s
t

a
v

c
r
b
a
i
p
m
o
e
d
t
p
t
t

d
p
m

s
w
t
t
v
e
v
l
(
l

a

The reputation loss of a user given by its deviance is repre-
ented by Li, while TRi is the temporary reputation of a user, after
he division of the reward and the discount of its own loss.

Ri is the final reputation of a user; Ra is the reputation of the
ccusing user, in case of his win. In case the provider wins the
oting, the Ra calculation is not performed and the bp operand

inside the Ri sum must be 2bp, as the provider is not a part of the
reward divider. The value is given in the form of a new reputation
value, that must be transformed into a reputation variation by
Ri − bi to be put in the VT transaction.

This is an initial and basic form of reputation distribution,
which could be hardened or softened depending on specific sce-
nario demands. Finally, as Dawn presents itself in a very modular
way, it can actually work independently of the verdict calculation
form used.

4. Use case

Fig. 4 presents a small-scale example of Dawn protocol based
on the execution scenario from Fig. 2. A client C1 submits a
microservices request through transaction MR1 detailing all pro-
essing and communication requirements. Specifically, the client
equests for 1 vCPU (2.5 GHz), 4 GB RAM, 64 GB storage, network
andwidth of 15 Mbps, maximum latency of 150 ms and 99.997%
vailability. The client sends its request to the network and once
t has been inserted in the blockchain, providers can send their
roposals. In this example, providers P1 and P2 send MPs that
eet the request’s requirements. The first proposes to supply
nly microservice 1, while the second proposes to provision the
ntire request. Details on pricing policies were omitted as they
o not interfere with the protocol operation, and are just used
o support client’s decisions. Following, C1 selects the MP2 (from
rovider P2) which includes all of the microservices requested. In
his example, a RE is unnecessary. Finally, a Contract Commit (CC)
ransaction is created by the client referencing MP2.

In addition, during the contract negotiation and establishment
escribed so far, providers P1, P2, and a third provider P3 already
erform the monitoring of QoS metrics using the monitoring
echanism described in Section 3.4.1.
Eventually, C1 receives an alert from its monitoring module

tating that a QoS indicator was violated. After collecting the data
hich supported the alert, C1 creates a voting call transaction. In
his transaction, C1 specifies the contract that is under analysis,
he encrypted seed (49a7b83c8), the MP2, the specific microser-
ice and the monitoring period used to compose a dataset of 6
ntries. The minimum bet that must be paid to participate in the
oting session is also defined in the transaction, as well as the
ocktime to indicate how long the transaction can be referenced
set to 2 blocks after the corresponding one). Votes sent after the
ocktime are rejected.

Once C1 voting call is registered on blockchain, participants
who have monitoring data about the defendant provider can
submit their votes on whether the accusation is true or not. In
the example of Fig. 4, P1, P3, and a customer C2 – who has an
ctive contract with P2 – decide to send votes. In the vote of P3,

which is taken as an example, the minimum bet value was used,
and levels of violation similar to those of the C1 were found in
the last 6 monitoring events.

As soon as the voting period closes, the accusing client or the
accused provider can send a verdict to finalize the process. In this
example, it is assumed that P3, C2, and P1 bet only the minimum
value and have similar data, which attest to the veracity of the
C1 accusation and therefore consider P2 as guilty. The accusing
client sends the VT transaction and informs that the provider P2
was defined as guilty and all voting participants (C1, C2, P1 and
P3) receive in addition to the initial bet, the proportionally shared
10
bet of P2. Thus, the contract audit phase ends, in which the culprit
is punished by losing reputation and the voting participants are
rewarded by increasing their reputation indicators.

The reader will notice that almost all the interaction of the
protocol processes described so far could be automated by the
user. For instance, MPs could be issued automatically in response
to predefined sets of request informations, VCs and votes in a
similar manner, could be sent as an automatic response to a break
detection in the former and to a newly received VC in the latter.
A similar rationale could be applied to most of the transaction
types, in a way that through the analysis of the chain and recent
transactions, the human interactions with the system could be
lowered to a minimum.

5. Threats analysis

In this section we study how Dawn protocol reacts to a set of
threats and dishonest participants. Initially, all the characteristics
and threats that are outside the scope of the protocol are high-
lighted and discussed (Section 5.1). Latter, threats related with
blockchain network consensus are analysed (Section 5.2). Finally,
clients and providers generated threats are discussed (Sections
5.3–5.5)

5.1. Assumptions and requirements

The first important aspect is the representation of microser-
vices requests. The selection of description languages, models,
and data structures to represent directed graphs is out-of-scope
for Dawn. Based on this principle, Dawn is not strongly dependent
on how the data is represented, turning the protocol extensible.

Another task exempted from Dawn’s scope is the initial certi-
fication of microservice providers joining the network. However,
we argue that the certificates could just be imported into the
protocol through recycling of existing ones (e.g., X.509), which
were already previously issued by trustworthy organizations and
that many service providers already possess. This would make
entering the network fairly simple for existing microservices
provision business. Other options include a community agree-
ment to choose a third-party organization responsible for issuing
the certificates in a partnership mode, or the institution of a
dedicated certifying organization. Certification would be the only
centralization entity of the network. However, it does not affect in
any way the decentralization of Dawn transactions. A disfunction
in the certification entity (e.g., a possible fault event) during a
certain time would only prevent newmicroservice providers from
joining in, not affecting the operation of the network itself and the
activities to establish contracts and audits.

In addition, Dawn is not responsible for controlling the mi-
croservices or other functions performed internally by microser-
vice providers. The same prerequisite is applied for the instanti-
ation of the monitoring module in the contracted infrastructure.
Finally, Dawn does not include the design and implementation
of the monitoring module, although it makes extensive use of
its functionality. The protocol assumes that virtual private com-
munication networks and safe channels are used to transfer data
between monitoring modules and protocol actors.

5.2. Discussion on network consensus

The selection of a definitive or ideal form of consensus for the
protocol is not sought by the present paper. If the basic operating
characteristics of the blockchain are maintained, the protocol is
successful regardless of the underlying form of consensus.

A characteristic usually related to Proof of Work (PoW) is the
low flow of transactions, created by the difficulty in inserting the

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030
Fig. 4. Example of use of Dawn protocol.
blocks and the recommended wait of six subsequent blocks to
guarantee confirmation. This disadvantage does not present an
obstacle to the protocol since short times between subsequent
transactions are not necessary. However, the main threat of PoW
in the context of Dawn is the important difference in computa-
tional power between clients, brokers and providers, which can
lead to interference with the protocol by domination in the blocks
creations.

Regarding scalability, the network is not expected to reach
the same number of nodes present in completely public net-
works, specifically general purpose cryptocurrencies such as Bit-
coin and Ethereum. It is estimated that the groups of microservice
providers and clients will have at most hundreds and thousands
of users, respectively. Therefore, the size limits indicate that
Byzantine fault tolerance could be used, employing algorithms
such as Practical Byzantine Fault Tolerance (pBFT) (Castro et al.,
1999) derivatives or Tendermint (Buchman, 2016), for example.

On any case, some form of incentive should be provided so
that miners or voters are willing to engage on the block creation
process. The first and more intuitive way is to distribute small
reputation rewards as gratifications for generating new blocks,
either directly to the winning miner, under PoW consensus, or to
all contributing voters, on Byzantine Fault Tolerance (BFT) based
ones. In order to explicitly assign these rewards, blocks could
have a list of reputation additions similar to the ones employed
on the Verdict and Transfers (VT) transaction, which would be

utilized in a complementary way when calculating the reputation

11
of a user following the algorithm presented on Section 3.1. The
reward for a block however should not be on the same order
of magnitude that the value received through contract establish-
ments and audits, since this would allow certain users to achieve
high statuses only by contributing to the block creation, and not
by actually participating on contract related processes, which
reputation is intended to stand for.

If a non extrinsically or non physically based form of consen-
sus was to be employed, such as Tendermint (Buchman, 2016)
or pBFT (Castro et al., 1999), then there would be no significant
addition of monetary costs for a node to actively participate on
the consensus process. Thus, although rewards are needed in the
beginning of the network’s life, their value could be possibly re-
duced as time passes since the existence and correct functioning
of the service itself, paired with the mild operational costs, could
serve as sufficient motivation for users to engage in the block
creation routines.

This discussion although important, is far from the focus of
the present paper and further possibilities of miner rewards as
well as selection of one among the several existing consensus
algorithms are regarded as implementation directed subjects and
left for future work.

5.3. Common threats

Common threats consist of a set of possible actions that would

be harmful to the protocol and that can be performed by any user,

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

r
i
t
b
d
t
a
s
w
c
s
W
u
i
t

v
H
i
t
y
t

5

s
o
N
t
e
a
s
k
a
p
t
c
f
t
T
i
t
t

5

t
i
o
e
a
t
r

c
d
b
v
a
h
p
a
e
a

o

egardless of their participation group. The first and most easily
dentifiable threat is the falsification or fraud of transactions. This
hreat is fortunately addressed by the very functioning of the
lockchain. Although any user can write a transaction with biased
ata and try to register it on blockchain, an honest user will iden-
ify the fraud by executing the verification algorithm and will not
llow the registration of such fraudulent data. The only possible
cenario to register an invalid transaction on blockchain occurs
hen the consensus mechanism (e.g., computing power, votes) is
ontrolled by a majority of dishonest participants following the
ame illegitimate objective, which is commonly impracticable.
ith regard to the same spectrum of threats is the attempt to
se false keys or certificates, so that the user attaches such false
nformation to a transaction, but again the simple verification by
he receiving node is already effective to prevent it.

A complex threat to be faced by Dawn is the discovery of
alid keys by dishonest users, which can unfold into other attacks.
owever, this threat cannot be considered a protocol vulnerabil-
ty because the effective protection of private keys is an inherent
ask to their owners and the security against a possible cryptanal-
sis process that will result in the discovery of keys depends on
he level of robustness of the encryption method employed.

.3.1. Contracts negotiations
Although the contract establishment phase does not have a

pecific set of harmful vulnerabilities, the biased manipulation
f the seed attribute in the MP transaction can bring problems.
othing would prevent a provider from instead of following
he correct process – which is choosing a random number and
ncrypting it with the module’s public key – simply publishing
ny clear value in the transaction. This inconvenience cannot be
olved with signatures, since the corresponding module’s private
ey is necessary to verify the data. However, this is not in fact
vulnerability of Dawn and does not operationally harm the
rotocol. Even if any unencrypted seed attribute is published,
he decryption algorithm will generate an error due to the in-
onsistency of the data reported. The only negative effect arising
rom such action is that a provider would not be able to obtain
he public voting key used to visualize client’s data in a vote.
hus, it is assumed that there is no real advantage in sending an
ncorrect encrypted seed, as the service provider is just abdicating
he visualization of client’s data. The same reasoning applies to
he seeds provided by clients.

.3.2. Auditing contracts
In the audit phase there is a relatively larger set of possible

hreats to Dawn, mainly due to data sensitivity and restrictive
nteractions between participants. Initially, regarding the concept
f focal points for obtaining collective conclusions, the direct
xchange of sensitive information between users should not be
dmitted, as it would allow the emergence of collusion, in which
he participants could tend to generate inaccurate or incorrect
esponses in order to increase their rewards or avoid punishment.

However, Dawn does not have the ability to prevent deliberate
ommunication of voting data between users, because even with
ata being encrypted in different ways, there must inevitably
e a form to view them to generate the appropriate collective
erdict. From this analysis, dishonest users can quite simply have
ccess to their own data, but it is not possible to have access to
onest third-party users voting data regarding the security of the
rotocol. Such a statement is valid because in the case of sending
n honest vote there is no way to view the data, since they are
ncrypted by the voting key, known only by the accusing user
nd by the accused provider.
A user can exhibit dishonest behaviour to increase reputation

r damage the reputation of other users. Two strategies can be
12
employed by the user to obtain (or generate) false monitoring
data at the voting phase. The first is the artificial generation of
data by observing the writing patterns of the monitoring module.
In this case, a dishonest user creates a new dataset and populates
it with data that meet the biased objectives. The second way of
creating artificial data is by emulation, inserting a valid monitor-
ing module in an infrastructure similar to the original request.
Latter, the biased data are generated by external and artificial
disturbances, making the data unreal even though originated
from a valid monitoring module.

The introduction of invalid forged data of the first form is
handled in a simple way by Dawn through the use of signatures
and encryption in general. First, the private key used to vote is
built secretly using the seeds provided by the accused provider
and the accusing user. Both values are concatenated and then
encrypted with the module’s private key generating a resultant
set of data that cannot be constructed in polynomial time by any
participant outside the module.

In turn, the use of emulation to create biased data has complex
remediation, as there is no easily verifiable evidence to indicate
this attack. Dawn makes it difficult to perform such emulations,
but has no methods of correcting and checking for occurrence. In
short, the emulations are divided into two main types according
to the implementation.

• Active Emulation: this type occurs when a user initiates a
monitoring process in an adulterated infrastructure without
having any previous monitoring data from any other user.
The only plausible justification for this attack is to use the
fake data through a second address that would purpose-
fully lose the voting, while the primary address providing
assertive data receives the reputation lost by the second one.
Another alternative is the formation of coalitions of several
dishonest users who agree on the profile of the emulation
that is carried out. If the number of attackers is large enough
compared to the total number of voters, the resulting verdict
will be closer to the false data than to the honest one.

• Reactive Emulation: in this emulation, the attacker inserts
the module into an adulterated infrastructure and uses real
monitoring data from other users (discovered in some way)
to direct the emulation. The reactivity of the process is due
to the need of a predecessor breach of confidentially about
other’s monitoring data. For the emulation to happen, there
must be first a disclosure of the public voting key of a
client or service provider before the end of a voting session.
By discovering the public voting key before the end of the
established locktime, a malicious user can use it to decrypt
all the votes already entered in the blockchain, and estimate
– by a precalculation of the verdict – the median vote
that defines the result up to that moment. Thus, the user
directs the emulation to coincide with the found median,
consequently increasing the final reward.

To address the feasibility of such emulations and other individ-
ual attacks the analysis is divided between clients and providers
groups in the next sections.

5.4. Clients generated threats

For the client, theoretically the individual active emulation
does not represent an advantageous attack since for obtaining a
reputation gain at the main account is also necessary a second
one, both with active contracts. It is then needed to spend time
on an already contracted infrastructure to generate false data, so
that the main account can receive a reputation fraction.

Through an initial analysis, this form of attack implies in a
doubled cost due to the need of two similar active contracts

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

t
r
t
b
a

w
t
h
s
i
b

t
t
h
v
w
w
c
t
i
i
i
f

s
c
o
i
d
n
s
t
v
f
e
o
b
p

s
r
w
a
w
o
t

u
a
o
t
a
s
a
t
a
d
o

5

v
e

hat demand payment. There is also the underutilization of the
esources that better applied could be generating profit. At last,
he main account receives just a fraction of the reputation lost
y the second one, while all the other divisor users also receive
piece without any costs.
A second possibility is the individual multiple emulation,

hich consists of a single user possessing a group of fake accounts
o endorse his victories. This form of attack is also considered
ighly costly because the user would need to contract a large
et of infrastructures to be able to have some form of advantage
n the blockchain network, which in comparison with a honest
ehaviour is a lot less rewarding given the expenses.
The collective multiple emulations are a lot less costly and

echnically less complex to be executed. The biggest challenge in
his attack is to reunite a sufficiently large number of users that
ave the same form of contract and are willing to influence the
oting. As if the group is not numerous enough the participants
ill lose reputation instead of gaining it, because their fake data
ill be away from the correct majority. Again, thanks to the
oncept of focal points, users tend to be honest if they believe that
he majority of the network is honest as well, and the majority
s considered to be in fact honest, once this assumption is also
n some level a prerequisite of the protocol and the blockchain
tself. Therefore this form of attack is not trivial and even upon
inding means to achieve it, it is highly risky.

As for reactive emulations, there are no related high costs,
ince, as already pointed out, a honest set of monitoring data
an be used as basis for appending emulated tests. The execution
f reactive emulations depends on two main factors that are
nformation disclosure and time availability. If information is
isclosed by a dishonest attacker to a honest user, than there is
o security mechanism offered by the protocol since the safety of
ensitive information is a task of the user himself. Nonetheless, if
he disclosure is achieved through a voluntary revelation of the
oting public key, then its assumed that the revealer seeks some
orm of advantage by doing so. However, as the interests of an
mulator user are always different from the ones of an accusing
r accused user, the latter ones only will disclose the key upon
elief of losing the voting since in a winning position there is no
oint for doing so.
Revealing the key however, would generate the opposite re-

ults for the users in such condition. The emulator users, to
eceive more rewards, will approximate their data to the median,
hich would just reconfirm the supposed loss. In order to obtain
convergence of interest through these actions, the key revealer
ould have to convince a large number of voters to create data
n his behalf, which as already discussed in this section, is not
rivial.

The second factor, time availability, refers to how much time a
ser has to execute the emulation, once the disclosure of the key
nd hence of the data has already happened. Upon the possibility
f emulation, the more time a user has to do it – or the closer to
he time period pointed by the accusing user – the easier it is to
ccurately approximate the results to the median. However, the
horter the available time period the harder it is to obtain good
pproximation results. The protocol uses this rationale through
he VC’s locktime, in a way that if the voting period is consider-
bly smaller than the time necessary to gather the monitoring
ata used as proof, the impact of the emulations, if they ever
ccur, is very small.

.5. Providers generated threats

In the same manner as for the clients, data forging is easily
erified and its not considered feasible for providers. However, for
mulations there are a set of distinct aspects that demand a new
13
analysis. The first is the easiness to create fake client accounts,
since there is no need for advanced forms of authenticity as in
the inverse case. The second is the reduced amount of costs for
certain attacks, as there is no need for an actual allocation or
resource usage on a contract with a fake client.

Obviously, for a provider to be able to perform emulations, it
is necessary an infrastructure in the form of the ones described
in the contract, and although there are no inherent contract
costs since the resources are owned by the provider, there is
its underutilization. Despite that, the simple fact of only needing
one infrastructure without contracting costs is a great facilitator
for active emulation attacks, where a main account absorbs the
reputation of a secondary one.

This form of attack, although substantially cheaper for
providers, does not present any gains for them. This is concluded
because even if a second account starts a voting with fake data
against the provider, aiming at his victory, the accused user
does not receive cuts of the lost reputation if he wins – as
pointed in Section 3.4.5. This means that only the honest voting
users would gain reputation from the fake account attack, while
the attacker besides receiving nothing, would contribute to a
reputation raise in a subset of the network participants, which
is inherently bad if his reputation stays the same. The inverse
path through individual multiple emulation, in which a provider
emulates a set of data and impersonates a group of clients in his
defence, is considered highly costly compared to the reputation
losses possibly avoided. This is because with the network and
established contracts growth, the number of necessary emulation
instances grows similarly.

Still on the provider’s client impersonation, when the contract
is established and a voting starts, each of the actors must inform
a encrypted seed value known secretly and individually by each
of them. However, as the dishonest provider is behind both
accounts he/she also has the knowledge of both clear seeds. If the
monitoring module only used the clear values in the creation of
the voting private key, then it would not be hard for the provider
to reconstruct it. Possessing the referred key, the data forging
would be possible and any counterfeit data could be encrypted
as authentic. A horde of fake clients without any creation or
monitoring cost could be used thereafter to steer the voting
with the forged data. Nonetheless, as aforementioned, the module
processes the clear values with its private key, so it is not possible
to recreate the keys even knowing the seed values. The module’s
signature is also a strong additional defence against this attack.

The execution of collective active emulation assumes the same
character as the discussed for the clients in Section 5.4, needing
the formation of a sufficiently large group to be effective. Cor-
respondingly, the reactive emulation presents itself in the same
way in the two groups.

5.6. Analysis

Through this section a broad and general list of threats was
identified and the mechanisms that the protocol utilizes to treat
them and protect the users were exposed. Although the present
threat and security analysis is made via theoretical lenses, its
accuracy and amplitude are believed to be high, specially consid-
ering the examination of all the possible dishonest actions that
could be taken in the distinct phases.

In the realm of protocol development and information security
as a whole, new possible vulnerabilities can be found at any given
time, which then may demand further security discussions. Nev-
ertheless, Dawn is considered to be safe in all of its component
processes.

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

6

t
t
t
w
i
D

o
p
h
t
u
b
o
o
t
u

f
t
b
o
p
b
d
m
a
a
t
V

w
p
o
s
n
t
e

6

b
c
a
t
m

t

t

s
a
c
s
p
a
b
o

v

f
t

t

t

. Theoretical limits, issued messages and data volume

The Dawn protocol uses and trusts the blockchain mechanism
o disseminate reliable data among participants. However, several
ransactions and data are generated by Dawn, being agnostic to
he consensus mechanism used by the blockchain. In this sense,
e have employed analytical modelling to investigate the min-

mum and maximum number of issued transactions to support
awn, as well as the storage data volume and network traffic.
The number of issued transactions represents the total amount

f unique transactions that are created by the users on each
rocess of the protocol. This metric counts every transaction as
aving the same weight on the final value, with disregard to its
ype, size and distributed replication. Next, the storage data vol-
me is simply the product of the number of unique transactions
y the expected size for that type, representing the total amount
f information that must be stored to preserve the whole history
f the chain. Finally, the network traffic is an approximation of
he total expected traffic that should be generated to send all the
nique transactions to all the users.
To discover the theoretical limits of the metrics, we consider

or each case a varying number of total clients and providers,
hen the necessary amount of unique transactions that must
e created for all clients to establish a contract is counted. In
rder to make the analysis feasible and yet representative of the
rotocol processes, we consider some simplifications about the
ehaviour of both clients and providers: (i) all MRs sent by clients
emand the same amount of microservices, denoted m; (ii) all
icroservices demand the same type of infrastructure, which is
lso available for purchase from all the providers; (iii) MPs are
lways sent attending to all the remaining microservices in the
argeted MR or RE; and (iv) all clients will send votes to any new
C that accuses a provider with which they have active contracts.
From these simplifying assumptions we can derive best an

orst cases for all three metrics. For each case, two equations are
resented: the first is a long version that has terms representative
f each protocol process and the second is its corresponding
implified version. In all of these equations t represents the total
umber of unique transactions, p the number of providers, c
he number of clients and β the percentage of contracts that
xperience a SLA break.

.1. Best case

The best case scenario happens when only the minimum num-
er of transactions would be created to commit and audit a
ontract for each client. Eqs. (9) and (10) represent this metric
nd along this section we explain the logic behind the construc-
ion of the former, while the latter is just a direct product of
athematical manipulation.

= p + 3c + βc + βc
(c
p

− 1
)

+ βc + c (9)

= p + c
(β(p + c)

p
+ 4

)
(10)

The first term of Eq. (9) is relative to the CP transaction and
ince each provider must publish its own, p new transactions
re created. For the contract establishment in the best case, the
lient sends a MR which is replied by only one arbitrary provider
upplying all the microservices, finally the client accepts this sole
roposal and commits the full contract with that provider. We
ssume further that MPs for each request in this case will be sent
y a random provider in an uniform distribution. The process
f committing a contract is represented by the second term
14
in Eq. (9) considering that for each client three new transactions
are created.

Since βc contracts will break, there will be βc VCs (third
term). If the amount of clients is smaller or equal to the amount
of providers, then the protocol is by definition unable to audit
contracts because there would be at most one client contract
for any given provider and thus there would be no votes. If
however the amount of clients is at least twice the providers, then
audits can occur and since the contracts are uniformly distributed
among providers, there will be theoretically c/p active contracts
with any given provider. Therefore, as all microservices utilize the
same infrastructure, there will be c

p − 1 votes to each of the βc
oting calls (fourth term). Finally, there will be βc VT (fifth term)

and c CF (sixth term) transactions.

6.2. Worst case

The main difference from the best to the worst case is that
in the contract establishment phase all providers will send MPs
to any MR or RE from a client which has not already accepted a
previous proposal from the same provider. Additionally, instead
of blindly accepting the first proposal, clients will purchase only
one microservice from a single proposal and will issue a RE
calling for new proposals. These changes beside affecting both
contract committing and auditing phases also demand to take
into consideration the number of requested microservices. To
better structure the analysis we divide the worst case in two
forms: the first where the amount of microservices requested
by any user is larger or equal to the total amount of providers
(m ≥ p) and the second where it is smaller (m < p). For the
irst form of the worst case, where m ≥ p, the number of issued
ransactions is given by Eq. (11) and its simplified form in Eq. (12).

= p + c + c
(p2 + p

2
+ p

)
+ βc + βc(c − 1) + βc + c (11)

= p + c
(p2 + 3p

2
+ β(1 + c) + 2

)
(12)

The first and two last terms of Eq. (11) represent the same
processes as their parallels in the best case, namely the CPs, VTs
and CFs, respectively. The second term represents the MRs, one
per client and thus c in total. As the number of microservices
is larger than the number of providers and a client contracts
only one microservice from each MP (except when there is only
one provider left), any client will end up committing a contract
involving all the providers. In this sense, for each MR there will
be a number of new MPs that is equal to the sum of the first p
naturals, since for each new round of proposals started by the REs
one additional provider will not send new transactions because
his proposal was accepted. For each MR, a client will also send a
RE to accept every single microservice and a CC transaction in the
end of the process, resulting in a total of p additional transactions.
All these transactions are summarized in the third term of Eq. (11)
and again the number of VCs is expressed by βc in the fourth
term. Since all clients establish a contract with all the providers,
any client can vote to any voting call and hence there are c − 1
votes to each of the βc VCs.

t = p+ c + c
(m∑

i=0

(p− i)+m
)

+ βc + βc
(qc

p
− 1

)
+ βc + c (13)

t = p + c
(m(2p − m + 3)

+ β
(
1 +

qc)
+ 2

)
(14)
2 p

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

b
v
o
p
a
s
o
c
c
w
u
c
a
o
s
n
R
o

c
β

6

h
w
s
w
p
W
o
n
T
s

For the second form of the worst case, where m < p, the num-
er of issued transactions is given by Eq. (13) and its simplified
ersion in Eq. (14). The only differences of this form to the first
ne are the third and fifth terms of Eq. (13) in relation to their
arallels in Eq. (11), both corresponding to contract establishment
nd the votes, respectively. As the number of microservices is
maller than the number of providers and a client accepts only
ne microservice from one single proposal at a time, instead of
ommitting contracts involving all the providers, a client will
ommit his contract with a random m

p fraction of the total. Again,
e assume clients will choose proposals to accept in a random
niform manner and therefore any provider will have active
ontracts with roughly m

p clients, since that is the probability of
given provider to be included in a new contract. The amount
f proposals sent by providers and the amount of REs are also
imilar to the total of the previous form, the difference is that
ow the amount of proposal rounds – and thus the amount of
Es – is limited by the number of microservices, yielding for all
f these transactions the third term of Eq. (13). Finally, since m

p

lients have an active contract with any given provider, for each
c voting call there will be roughly mc

p − 1 votes (fifth term).

.3. Parameters and scenarios

To effectively quantify the amount of new transactions, we
ave plotted in Fig. 5 the simplified equations for both best and
orst cases with varying number of clients and providers. The
ame was made for the total storage data volume in Fig. 6, except
e have utilized the extended versions of the equations multi-
lying each of the terms by the associated transaction type size.
ith the exception of the best cases, in all of the plots the number
f clients varies from 1000 to 20 000 on steps of 100, while the
umber of providers varies from 100 to 2000 with steps of 10.
he difference for the best case plots is that the number of clients
tarts at 4000 to always maintain the condition of c ≥ 2p, as
discussed in Section 6.1. For the worst case, graphs were plotted
for both the forms discussed in Section 6.2 and also an additional
one with m fixed in 500, so the first form was employed for
m < 500 and the second for m ≥ 500. This seemingly arbitrary
number was chosen because Uber has circa 500 microservices to
support their urban mobility platform (Haddad, 2015).

6.4. Results and discussion

Initially, it is noticeable that the number of unique transac-
tions issued varies on several orders of magnitudes from the best
case on Fig. 5(a) to the largest worst case scenario on Fig. 5(b).
This is mostly due to the different behaviours of the equations,
since the first is quadratic on c and grows restricted by p, while
the second is quadratic both in c and p. The best case also
exhibits a reduction in the number of issued transactions for
a given amount of clients when the number of providers rise.
This can be observed because the modelling assumes that client
contracts will be evenly distributed among providers, thus with
more providers there are less clients contractually involved with
each one of them, which in turn reduces the amount of total votes
sent — mathematically, this can be visualized by the fourth term
in Eq. (9) being divided by p.

For all the forms of the worst case scenario the plots have a
similar behaviour, as all of them grow with a direct relation to c
and p. Analysing all the three forms in Fig. 5(b–d), it is possible to
note the impact of the number of demanded microservices. From
the case where the number of microservices is always larger then
the amount of providers to the mix case with m = 500 there is
a reduction of 2.7x in the total transaction count. From the case
15
Table 9
Network traffic generated to transport all the data.
Case Smallest traffic Largest traffic

Best 43.7 GB 9.8 TB
Worst (m ≥ p) 1.2 TB 167.6 PB
Worst (m = 500) 1.2 TB 73 PB
Worst (m = 50) 884.3 GB 8.2 PB

with m = 500 to the case with m = 50 – where p is always larger
than m – the 10x reduction in the demanded microservice total
yields a 37.5x reduction in the number of issued transactions.
This results present themselves this way because as pointed
in Section 6.2 the demanded number of microservices dictates
the maximum amount of proposal rounds sent to a client and
naturally, with fewer microservices, fewer total proposals will be
sent.

From the analysis of the total storage data volume presented
in Fig. 6 it is clear that the curves follow roughly the same growth
pattern as the curves for total issued transactions, that is because
although the coefficient of each term has increased – from the
addition of transaction sizes – the asymptotic behaviour of the
equation remains the same. For the largest of the worst cases
in Fig. 6(b) with the maximum number of clients and providers,
there would be needed 7.8 TB of disk space to store all the proto-
col’s history. Again as observed on the number of transactions, the
total storage volume drops on several orders of magnitude from
the worst to best case, where on the latter there would be needed
at most 512 MB of storage space. The influence of the amount of
microservices can also be spotted in the storage volume with a
drop from around 3.4 TB on m = 500 to 393 GB on m = 50.

The network traffic generated to transport all the data to
all the users is showed on Table 9. The values are calculated
multiplying the smallest and largest data volumes for each case
by the number of users minus one. These values are an estimate
of the amount of traffic needed to distribute the data, however
the actual traffic might be higher or lower depending on network
topologies, message relaying algorithms, etc. As the network traf-
fic is closely related to the data volume that must be transmitted,
similar magnitude differences can be observed in this metric as
well.

The need for storage and network in the best and largest worst
case have very distinct resource demands. Although both these
forms model real possible situations of the protocol, it is unlikely
that in a practical execution the history of transactions would
completely fit in one or another. This is due to the simplifications
employed that create a standardized behaviour for the actors,
which in turn pushes the models towards the limits of the proto-
col. However in an actual real scenario there would be much more
fluctuations in the processes, taking the results of the metrics
to a middle ground between best and worst cases. Even if some
hypothetical execution fitted perfectly on the largest worst case,
still it would not be strictly necessary for all users to store all the
transactions, leaving to them the option to store only transactions
that they deem relevant while the chain as a whole is distributed
among several users or kept replicated as a single unit by a small
group of users.

7. Related work

By the time of doing this research, there has not been iden-
tified other related works that address microservices contracts
and their audit in a fully decentralized and trustful way as in the
present paper. However, the specialized literature on selecting
providers and auditing SLA, as well as on applying blockchain to
support large-scale distributed systems has solid contributions.

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

7

b
d
s
w
s
S
c
a
e
c
b
a

2
s
a
w
t
p
w
t
F
t
e

Fig. 5. Issued messages.
b
o
d
c

7

b
m
p
t
m
i
i
b
m
n

S
t
a
t
t
a

.1. Selecting providers and auditing SLAs

A third-party auditor for verifying cloud SLA was proposed
y Zhang et al. (2014). Similarly to Dawn, the auditor mechanism
oes not fully rely on monitored data from service providers and
upports multiple hardware performance indicators. In turn, the
ork of Sauvanaud et al. (2018) proposed an anomaly detection
ystem to identify preliminary symptoms that might lead to
LA breaks. In short, the systems rely on traditional hardware
ounters and operating system indicators such as memory load
nd CPU consumption. The proposal is tailored to virtualized
nvironments, gathering data from hypervisors and virtual ma-
hines. In Section 3.4.1 we argue that monitoring systems must
e provider’s agnostic and data should be verifiable for final users
nd competing providers.
Regarding the selection of providers, the work (Yazir et al.,

010) decomposed the management of cloud computing re-
ources in different tasks executed by autonomous agents. This
pproach ensures for the providers flexibility, by varying criteria
eights, and by adding or removing a criteria rather than change
he cloud provider settings. In turn, a QoS-architecture for de-
loying services across clouds (CloudPick) (Dastjerdi et al., 2015)
as proposed to rank and select providers to host virtual infras-
ructures (composed of multiple networked virtual machines).
inally, Multi-Criteria Decision Making (MCDM) algorithms are
raditionally applied for ranking and selecting providers (Ergu

t al., 2013; Rodrigues et al., 2019). The ranking method used a

16
y traditional approaches only consider criteria publicly available
r directly informed by providers to tenants. Dawn deepens the
iscussion by including the reputation from completed votes on
riteria set (as presented in Section 3.4.6).

.2. Distributed systems management based on blockchain

The work of Uriarte et al. (2018) proposes an Ethereum
lockchain network based on smart contracts for allocating and
onitoring IaaS in general terms, aiming at the creation of a
ublic infrastructure market. It used a second network destined
o the deployment and operation of services, negotiations and
onitoring data, while the blockchain stores smart contracts

tself and violation decisions. The decision about breaks is done
n a centralized manner and possibilities of decentralization are
riefly discussed. An oracle is used to retrieve monitoring infor-
ation from the side network into the main chain and there is
o reputation control in the aid of contract establishment.
The work of Pascale et al. (2017) aims at an automation of

mall Cell as a Service (SCaaS) contract establishments through
he use of Ethereum smart contracts, in which small companies
nd home locations could rent part of their network infrastruc-
ure to mobile internet providers. The equipment is concessed
hrough the mutually accorded smart contract and the payments
re periodical. The monitoring is only a provider’s task, which can

pply penalties or cancel the contract.

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030
Fig. 6. Storage data.
In turn, Backman et al. (2017) proposed a blockchain network
that in conjunction with other technologies acts as a 5G mobile
Internet slicer, providing infrastructures through smart contracts
to a variety of companies, specifically industrial automation de-
vices. The allocation is made on-demand and there is need for an
oracle that provides monitoring information for the appropriate
decision making.

The work of Alowayed et al. (2018) proposes a blockchain
based system to assign different scores to internet providers,
relying on a oracle to assure information of the provided services.
A two-actor conference is used to assure consensus over the data
received by the oracle and a third participant can be evoked in
case of fraud suspicion.

The proposal of Herbaut and Negru (2017) is a blockchain
network based on Hyperledger Fabric, to help Content Delivery
Network (CDN) content provision contract establishments. Mul-
tiple chains are used to deal with negotiation, distribution and
monitoring, the latter being just briefly discussed. The actors are
clients, providers and technical facilitators which create contracts
defining searches and preferences, service provision and technical
terms, respectively and in this order, which establishes a full
service provision.

On Franco et al. (2019), the authors propose an Ethereum
based model and implementation for a Network Function Vir-
tualization (NFV) infrastructure auction system. The auctions are
held on a Smart Contract (SC) which contains information about
client’s Virtual Network Functions (VNFs) and infrastructure pref-
erences, which can be accessed by infrastructure providers in
17
order to gather information and place bids. Multiple configuration
possibilities are provided for client’s definitions and provider’s
bid formulation, while monitoring integration is only briefly dis-
cussed.

The present paper differs from the previous ones for not
only defining a protocol capable of aiding in the microservice
service contract establishment but also to systematically rank the
providers according to their credibility in the service provision.
Our proposal also presents a solid technical form of monitoring
and most importantly utilizes the monitoring data to punish dis-
honest users, allowing the verifiable audit of SLA and converging
to a dynamic mapping of the provider’s service quality.

8. Conclusions

The lack of guarantee of SLA compliance by the providers is a
problem inherent in microservice provisioning contracts signed
with cloud and edge providers. Dawn mainly uses blockchain
technology to enable the creation and auditing of contracts. A
protocol incorporating several different transactions was pro-
posed to publish requests on the network and through them
carry out processes such as contracting and auditing services.
Moreover, the protocol defines each user a value in reputation
points that quantitatively reflects the QoS or behaviour on the
blockchain network. Monitoring processes are used to collect the
services status and to support the audition of SLA contracts. Each
possible outage is verified through votes based on both focal

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

p
v
p
b
f
c

D
d
u
i
f
i
a
o

D

c
t

A

f

R

A

2

B

B

C

C

C

D

D

E

F

G

G

H

oints and data from similar contexts. The use of votes allows the
erification of verdicts on the guilty and innocent, as well as the
ossibility of redistribution of reputation. Finally, the reputation-
ased negotiation used in Dawn can be used in the real world
or the most diverse purposes in guaranteeing service quality and
hoosing new business partners.
The theoretical analysis of all possible threats highlighted that

awn is resilient and robust in the face of the different threats,
ealing well with the possible existence of dishonest or malicious
sers. In the future, we foresee further development of the mon-
toring module and the user’s wallet, which endorse the proper
unctioning of the protocol. Another interesting consequent work
s an attempt of realization of some attacks listed in the security
nalysis as well as new found forms to confirm the conclusions
f the protocol’s robustness.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

The research leading to the results presented here has received
unding from UDESC, Brazil and FAPESC, Brazil.

eferences

lowayed, Y., Canini, M., Marcos, P., Chiesa, M., Barcellos, M., 2018. Picking a
partner: A fair blockchain based scoring protocol for autonomous systems.
In: Proceedings of the Applied Networking Research Workshop. In: ANRW
’18, ACM, New York, NY, USA, pp. 33–39. http://dx.doi.org/10.1145/3232755.
3232785.

020. AWS CloudFormation: Model and provision all your cloud infrastructure
resources. https://aws.amazon.com/cloudformation/, Accessed: 2020-09-01.

ackman, J., Yrjölä, S., Valtanen, K., Mämmelä, O., 2017. Blockchain network
slice broker in 5G: Slice leasing in factory of the future use case. In:
2017 Internet of Things Business Models, Users, and Networks. pp. 1–8.
http://dx.doi.org/10.1109/CTTE.2017.8260929.

uchman, E., 2016. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains (Ph.D. thesis). University of Guelph.

astro, M., Liskov, B., et al., 1999. Practical byzantine fault tolerance. In: OSDI,
Vol. 99. pp. 173–186.

lack, C.D., Bakshi, V.A., Braine, L., 2016. Smart Contract Templates: foundations,
design landscape and research directions. CoRR abs/1608.00771. arXiv:1608.
00771.

omi, A., Fotia, L., Messina, F., Pappalardo, G., Rosaci, D., Sarné, G.M.L., 2015.
A reputation-based approach to improve QoS in cloud service composition.
In: 2015 IEEE 24th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises. pp. 108–113. http://dx.doi.org/
10.1109/WETICE.2015.28.

astjerdi, A.V., Garg, S.K., Rana, O.F., Buyya, R., 2015. Cloudpick: a framework
for qos-aware and ontology-based service deployment across clouds. Softw.
- Pract. Exp. 45 (2), 197–231. http://dx.doi.org/10.1002/spe.2288.

i Francesco, P., Lago, P., Malavolta, I., 2019. Architecting with microservices:
A systematic mapping study. J. Syst. Softw. 150, 77–97. http://dx.doi.org/10.
1016/j.jss.2019.01.001, URL http://www.sciencedirect.com/science/article/pii/
S0164121219300019.

rgu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y., 2013. The analytic hierarchy process:
task scheduling and resource allocation in cloud computing environment. J.
Supercomput. 1–14.

ranco, M.F., Scheid, E.J., Granville, L.Z., Stiller, B., 2019. Brain: Blockchain-based
reverse auction for infrastructure supply in virtual network functions-as-a
-service. In: 2019 IFIP Networking Conference (IFIP Networking). pp. 1–9.
http://dx.doi.org/10.23919/IFIPNetworking.2019.8816843.

arcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A.,
Barcellos, M., Felber, P., Riviere, E., 2015. Edge-centric computing: Vision and
challenges. SIGCOMM Comput. Commun. Rev. 45 (5), 37–42.

ill, S.S., Buyya, R., 2018. Failure management for reliable cloud computing: A
taxonomy, model and future directions. Comput. Sci. Eng..

addad, E., 2015. Service-oriented architecture: Scaling the uber engineering
codebase as we grow. disponível em:< https://eng.uber.com/soa/>. Acesso
em: 23 fev. 2019.
18
Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V., 2016. Gremlin:
Systematic resilience testing of microservices. In: 2016 IEEE 36th Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE, pp.
57–66.

Herbaut, N., Negru, N., 2017. A model for collaborative blockchain-based video
delivery relying on advanced network services chains. IEEE Commun. Mag.
55 (9), 70–76. http://dx.doi.org/10.1109/MCOM.2017.1700117.

Koslovski, G.P., Primet, P.V.-B., Charão, A.S., 2009. Vxdl: Virtual resources and
interconnection networks description language. In: Vicat-Blanc Primet, P.,
Kudoh, T., Mambretti, J. (Eds.), Networks for Grid Applications. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 138–154.

Lins, S., Schneider, S., Sunyaev, A., 2018. Trust is good, control is better: Creating
secure clouds by continuous auditing. IEEE Trans. Cloud Comput. 6 (3),
890–903. http://dx.doi.org/10.1109/TCC.2016.2522411.

Mashayekhy, L., Nejad, M.M., Grosu, D., 2019. A trust-aware mechanism for cloud
federation formation. IEEE Trans. Cloud Comput..

Nakamoto, S., 2009. Bitcoin: A peer-to-peer electronic cash system. URL http:
//www.bitcoin.org/bitcoin.pdf.

2020. OpenStack heat documentation. https://docs.openstack.org/heat/latest/,
Accessed: 2020-09-01.

Pascale, E.D., McMenamy, J., Macaluso, I., Doyle, L., 2017. Smart contract SLAs
for dense small-cell-as-a-service. CoRR abs/1703.04502.

Rodrigues, L.R., Cardoso Jr., E., Alves Jr., O.C., Redígolo, F.F., Pillon, M.A.,
Miers, C.C., Koslovski, G.P., 2019. Cloud broker proposal based on multicrite-
ria decision-making and virtual infrastructure migration. Softw. - Pract. Exp.
49 (9), 1331–1351. http://dx.doi.org/10.1002/spe.2723.

Sauvanaud, C., Kaâniche, M., Kanoun, K., Lazri, K., Da Silva Silvestre, G.,
2018. Anomaly detection and diagnosis for cloud services: Practical experi-
ments and lessons learned. J. Syst. Softw. 139, 84–106. http://dx.doi.org/10.
1016/j.jss.2018.01.039, URL http://www.sciencedirect.com/science/article/pii/
S0164121218300256.

Shi, W., Zhang, L., Wu, C., Li, Z., Lau, F.C.M., 2016. An online auction framework
for dynamic resource provisioning in cloud computing. IEEE/ACM Trans.
Netw. 24 (4), 2060–2073. http://dx.doi.org/10.1109/TNET.2015.2444657.

Tuli, S., Mahmud, R., Tuli, S., Buyya, R., 2019. Fogbus: A blockchain-based
lightweight framework for edge and fog computing. J. Syst. Softw.
154, 22–36. http://dx.doi.org/10.1016/j.jss.2019.04.050, URL http://www.
sciencedirect.com/science/article/pii/S0164121219300822.

Uriarte, R.B., De Nicola, R., Kritikos, K., 2018. Towards distributed SLA man-
agement with smart contracts and blockchain. In: 2018 IEEE International
Conference on Cloud Computing Technology and Science, CloudCom 2018,
Nicosia, Cyprus, December 10-13, 2018. IEEE Computer Society, pp. 266–271.
http://dx.doi.org/10.1109/CloudCom2018.2018.00059.

Vaucher, S., Pires, R., Felber, P., Pasin, M., Schiavoni, V., Fetzer, C., 2018. Sgx-
aware container orchestration for heterogeneous clusters. In: 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS).
pp. 730–741. http://dx.doi.org/10.1109/ICDCS.2018.00076.

Veríssimo, P., Bessani, A.N., Pasin, M., 2012. The TClouds architecture: Open and
resilient cloud-of-clouds computing. In: IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, DSN 2012, Boston, MA,
USA, June 25-28, 2012. IEEE Computer Society, pp. 1–6. http://dx.doi.org/10.
1109/DSNW.2012.6264686.

Yazir, Y.O., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti, S., Coady, Y.,
2010. Dynamic resource allocation in computing clouds using distributed
multiple criteria decision analysis. In: IEEE 3rd International Conference on
Cloud Computing (CLOUD), 2010. IEEE, pp. 91–98.

Zhang, H., Jiang, H., Li, B., Liu, F., Vasilakos, A.V., Liu, J., 2016. A framework
for truthful online auctions in cloud computing with heterogeneous user
demands. IEEE Trans. Comput. 65 (3), 805–818. http://dx.doi.org/10.1109/TC.
2015.2435784.

Zhang, H., Ye, L., Shi, J., Du, X., Guizani, M., 2014. Verifying cloud service-
level agreement by a third-party auditor. Secur. Commun. Netw. 7 (3),
492–502. http://dx.doi.org/10.1002/sec.740, arXiv:https://onlinelibrary.wiley.
com/doi/pdf/10.1002/sec.740, URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/sec.740.

Wilton Jaciel Loch Master student at Santa Catarina State University (UDESC) in
Joinville/SC – Brazil and received his bachelor’s degree in computer science from
UDESC. He carried out research activities related to scheduling and management
on cloud computing resources at LabP2D (Laboratory of Parallel and Distributed
Processing) of UDESC.

Guilherme Piêgas Koslovski Professor of Computer Networks and Parallel
Programming at Santa Catarina State University (UDESC) in Joinville/SC - Brazil.
He received his doctorate from École Normale Supérieure at Lyon/France,
the master’s degree from Federal University of Santa Maria (UFSM), and his
bachelor’s degree from the UFSM in Computer Science. Currently, his research is
related to virtual infrastructures, scheduling, SLA specification, software defined
networks, and virtualization of computational and communication resources. He

http://dx.doi.org/10.1145/3232755.3232785
http://dx.doi.org/10.1145/3232755.3232785
http://dx.doi.org/10.1145/3232755.3232785
https://aws.amazon.com/cloudformation/
http://dx.doi.org/10.1109/CTTE.2017.8260929
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb5
http://arxiv.org/abs/1608.00771
http://arxiv.org/abs/1608.00771
http://arxiv.org/abs/1608.00771
http://arxiv.org/abs/1608.00771
http://dx.doi.org/10.1109/WETICE.2015.28
http://dx.doi.org/10.1109/WETICE.2015.28
http://dx.doi.org/10.1109/WETICE.2015.28
http://dx.doi.org/10.1002/spe.2288
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://www.sciencedirect.com/science/article/pii/S0164121219300019
http://www.sciencedirect.com/science/article/pii/S0164121219300019
http://www.sciencedirect.com/science/article/pii/S0164121219300019
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb10
http://dx.doi.org/10.23919/IFIPNetworking.2019.8816843
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb13
https://eng.uber.com/soa/
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb15
http://dx.doi.org/10.1109/MCOM.2017.1700117
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb17
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb17
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb17
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb17
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb17
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb17
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb17
http://dx.doi.org/10.1109/TCC.2016.2522411
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb19
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://docs.openstack.org/heat/latest/
http://arxiv.org/abs/1703.04502
http://dx.doi.org/10.1002/spe.2723
http://dx.doi.org/10.1016/j.jss.2018.01.039
http://dx.doi.org/10.1016/j.jss.2018.01.039
http://dx.doi.org/10.1016/j.jss.2018.01.039
http://www.sciencedirect.com/science/article/pii/S0164121218300256
http://www.sciencedirect.com/science/article/pii/S0164121218300256
http://www.sciencedirect.com/science/article/pii/S0164121218300256
http://dx.doi.org/10.1109/TNET.2015.2444657
http://dx.doi.org/10.1016/j.jss.2019.04.050
http://www.sciencedirect.com/science/article/pii/S0164121219300822
http://www.sciencedirect.com/science/article/pii/S0164121219300822
http://www.sciencedirect.com/science/article/pii/S0164121219300822
http://dx.doi.org/10.1109/CloudCom2018.2018.00059
http://dx.doi.org/10.1109/ICDCS.2018.00076
http://dx.doi.org/10.1109/DSNW.2012.6264686
http://dx.doi.org/10.1109/DSNW.2012.6264686
http://dx.doi.org/10.1109/DSNW.2012.6264686
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00127-8/sb30
http://dx.doi.org/10.1109/TC.2015.2435784
http://dx.doi.org/10.1109/TC.2015.2435784
http://dx.doi.org/10.1109/TC.2015.2435784
http://dx.doi.org/10.1002/sec.740
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.740
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.740
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.740
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.740
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.740
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.740

W.J. Loch, G.P. Koslovski, M.A. Pillon et al. The Journal of Systems & Software 180 (2021) 111030

i
a

M
m
r
F
d
N
t
G
d
C
a

C
p
H
E
(

s the coordinator of LabP2D (Laboratory of Parallel and Distributed Processing)
t UDESC in which there is a private OpenStack cloud.

aurício Aronne Pillon Professor of Distributed Systems, and Parallel Program-
ing at Santa Catarina State University (UDESC) in Joinville/SC - Brazil. He

eceived his doctorate from the Institut National Polytechnique of Grenoble at
rance, the master’s degree from Pontifical Catholic University of Rio Grande
o Sul (PUC-RS), and his bachelor’s degree from the Regional University of the
orthwest of the State of Rio Grande do Sul in Informatics. Post-doctorate at
he Federal University of Rio Grande do Sul (UFRGS), conducted in the Research
roup - Parallel and Distributed Processing Group (GPPD). He currently con-
ucts research on cloud computing, computer networks, and energy efficiency.
urrently, he assists on the coordination of the LabP2D (Laboratory of Parallel
nd Distributed Processing) of UDESC which has a private OpenStack cloud.

harles Christian Miers Professor of Computer Networks Security, and Com-
uter Networks at Santa Catarina State University (UDESC) in Joinville/SC.
e received his doctorate from University of São Paulo (USP) in Computer
ngineering, the master’s degree from Federal University of Santa Catarina’s
UFSC) Department of Computer Science, and his bachelor’s degree from the
19
Santa Catarina State University in Data Processing. Security consultant at LockNet
Security Solutions, in the software area, between 1999–2003, having worked
on projects of national companies (private and public) and multinationals. At
the Polytechnic School of the University of São Paulo (USP) he coordinated
several research projects with Ericsson Research and worked on projects with
RNP and the European Community (FP7). He currently conducts research on
cloud computing, computer network security and ICT sustainability. Currently, he
assists in the coordination of the LabP2D (Laboratory of Parallel and Distributed
Processing) of UDESC which has a private OpenStack cloud; and also, is the
coordinator of COLMEIA (Open Source/Hardware Research Group).

Marcelo Pasin Researcher in the University of Neuchâtel (Switzerland) and
an associate professor in the Engineering School Arc of the University of
Applied Sciences and Arts Western Switzerland. He holds diplomas of Doctor in
Computer Science from the National Polytechnic Institute of Grenoble (France,
1999), Master in Computer Science from the Federal University of Rio Grande
do Sul (Porto Alegre, Brazil, 1994) and Electrical Engineering from the Federal
University of Santa Maria (Brazil, 1988). He is member of IEEE, ACM and SBC
(Brazil). He currently conducts research on resource management for a high-
performance publish/subscribe system, and locality optimized indexed storage
for highly distributed cloud applications.

	A novel blockchain protocol for selecting microservices providers and auditing contracts
	Introduction
	Overview
	Main actors
	Tenants and microservice providers reputation
	Problem statement

	Protocol
	Users reputation
	Common transactions attributes and certificate publishing
	Contract negotiations
	Microservice request
	Microservice proposal
	Request extension
	Contract commit and contract finalization

	Auditing contracts
	Monitoring module
	Voting keys
	Voting process
	Voting call and votes
	Verdict and transfer of reputation
	Verdict calculation

	Use case
	Threats analysis
	Assumptions and requirements
	Discussion on network consensus
	Common threats
	Contracts negotiations
	Auditing contracts

	Clients generated threats
	Providers generated threats
	Analysis

	Theoretical limits, issued messages and data volume
	Best case
	Worst case
	Parameters and scenarios
	Results and discussion

	Related work
	Selecting providers and auditing SLAs
	Distributed systems management based on blockchain

	Conclusions
	Declaration of competing interest
	Acknowledgements
	References

