
RunC and Kata runtime using Docker:
a network perspective comparison
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Abstract—The container technology allows packing applica-
tions, dependencies, and configurations on a single abstraction,
which can be instantiated independently of hosting platform or
hardware. Among the existing containers platforms, the present
work focus on Docker, specifically the module function runtime
runC, public available under the Open Container Initiative
(OCI), is compared to kata open-source runtime. In short, our
work presents an in-depth comparison between both runtimes
highlighting the communication support. Specifically, our com-
parison comprehend different container network drivers, using
as criteria network bandwidth and latency. The results show
an already better expected runC performance, but also reveal
a kata baseline, and help to understand how to choose the
communication driver. However, kata still offers a better level
of security and isolation.

Index Terms—containers, docker, kata, runC, networking

I. INTRODUCTION

The improvement of new technologies in virtualization
has shown a significant increase in cloud computing. Clouds
become the delivery model for computing services, e.g.,
networking, software, analytic, servers, and storage all over
the Internet, offering faster innovation with flexible resources
implying economies of scale [1].

The virtualization technology allows to create multiple
virtualized environments using a single physical hardware.
This is achieved by the hypervisor, which coordinates the
sharing of the physical resources of the computer, serving as an
interface between the virtual machines (VMs) and the adjacent
physical hardware, certifying that each VM has access to the
resources it needs to execute properly [2].

Containerization emerges as an evolution of this classic
virtualization of machines. Containers are an executable unit
of software, in which application code, libraries, dependencies
and configuration files are packaged together in order run it
anywhere [3].

Related to containerization management platforms, there
is Docker, which is an open Platform-as-a-Service (PaaS)/
Infrastructure-as-a-Service (IaaS) for developing, shipping,
and running containerized applications [4]. Inside its modular
platform, there is a lightweight universal container runtime
denominated runC. The runtime purpose is to run containers
using the command line, all according to OCI standard. A
new approach to it is the runtime kata, which focus primarily
on security issues based on a lightweight VM which holds a

container inside, bringing up the benefits of containers and the
the security of VMs.

We aim to analyze the runC and Kata runtimes regarding the
security vs. performance tradeoff for network communication.
We define test scenarios and use the iPerf tool to generate
traffic. Data was collected and analyzed regarding in how the
extra security layer of the Kata impacts its performance against
runC.

The article is organized as follows: a brief description
about how Docker provides the basic network communication
for each container and how the runC runtime functions is
presented on Section II. How Kata Containers works and
provides the network communication in Section IV. An ex-
planation about the Linux interfaces used in both runtimes in
Section V. Details about the experiments and results are shown
in Section VI. Section VII addresses the related work.

II. DOCKER CONTAINER NETWORKING

Docker container technology was first released in 2013
as an open source PaaS, levering concepts from Linux like
cgroups, namespaces and unionFS. In 2015 a governance
council calledOCI was created and it is responsible to develop
standards to the containers infrastructure, developing the
Container Network Model (CNM).

The CNM document shows steps to supply traffic and
communication through the network to the containers while
being abstract enough to support a variety of network drivers
[5]. It is build on three components:

• sandbox: A sandbox is an isolated network stack, contain-
ing its configurations, managing routing tables, Domain
Name System (DNS) settings, ports, and the containers
interfaces. A sandbox may contain several endpoints from
multiple networks.

• endpoint: An endpoint works as virtual network interface,
and it has the attribution of establish a connection from a
sandbox to a network. An implementation of an endpoint
could be a Virtual Ethernet (vEth) pair and an endpoint.
It can belong only to one network and one sandbox at
same time.

• network: A network is a software implementation of
802.1d bridge (switch), and as such they group up and
isolate endpoints.

The libnetwork library is the CNM implemented as a mod-
ule inside Docker [5] so it dispatches all the three components
from the CNM document, calling built-in network drivers978-1-6654-4035-6/21/$31.00 ©2021 IEEE



which come with Docker Engine and the assistance of its
own pluggable interface. Docker can arrange the network
communication between numerous containers automatically
by plugging in the built-in drivers (Figure 1).

Fig. 1. Libnetwork implementation by Docker

This library still provides some other important network
services such as load balancer, a function to help deliver traffic
management services more efficiently, mostly used in the
Docker swarm mode. It also has a service discovery, meaning
containers can discover one another when it are on the same
network by name, embedding an inside DNS server.

III. RUNC RUNTIME

Another specification made by OCI is related to runtimes.
It exists with the sole purpose of containing the life cycle of a
container, including configuration files and the execution envi-
ronment, whereupon is specified to ensure that containerized
applications don’t fail between common actions also defined
inside the life cycle [6].

The default module option for Docker related about con-
tainer life cycle is the runC runtime. RunC works as a
command line client for running applications packaged ac-
cording to the OCI format, and is a compliant implementation
of the OCI specification [7]. Since Docker is a container
technology, it takes advantage of the Linux operating system
(OS) virtualization functions of namespaces / cgroups to create
the basic container isolation as well as to control the amount
of resources each container have access to. Thus, Docker has
an binary file called dockerd or Docker Engine whom provides
access to create the containers by requesting access to specific
Linux kernel features.

Dockerd being a modular application includes other func-
tionalities separated in other binary files which are needed to
initialize containers and to make the proper network connec-
tion for them. The binary component files are the runtime,
containerd, and shim. The containerd is an industry-standard
high level container runtime available as a daemon for Linux
and Windows, which can manage the complete container
life cycle of its host system [8]. Regarding the shim, it is
located between the dockerd and the low level runC runtime
to facilitate bidirectional communication for the container and
also allowing for containers to be daemonless.

In order to a container be created, accessed, and properly
configured inside the host network, the dockerd has a com-
mand line providing some specifications for the container.

The containerd is called by the dockerd process to start
the construction, isolation and configuration of the container.
Figure 2 exemplifies all the communication between processes,
libraries, and kernel to provide a container to the system.

Fig. 2. Docker architecture based on runC

Containerd generates sub calls for modules from the runtime
and the shim. The runtime uses the libnetwork to access
kernel features, configuring the container, setting up network
stack with endpoints, connecting the container endpoints to
a network, IPtables rules, and DNS properties if necessary.
Finally, the runtime provides a link to the containerd with the
shim, now holding all the input and outputs of the container.

IV. KATA CONTAINERS

Due to Docker yielding open source access to [9] with it
own container format and runtime to the OCI, it has allowed
several new studies to start using this format and technology.
Among one of these studies was the Kata Containers in 2017,
an open source container runtime proposing to increase con-
tainer security by allocating the container inside a lightweight
VMs. The default kernel provided in Kata Containers was
highly optimized for kernel boot time and minimal memory
footprint, providing only those services required by a container
workload. By using the traditional container technology to
create and isolate containers and adding a highly optimized
kernel as a guest kernel [10] with a complete hardware
virtualization interface, it is possible to have an extra layer of
encapsulation (Figure 3). Thus, increasing the security level
of the host system.

The containers don’t share the same kernel, and are even
more isolated being inside a set of a virtualized hardware and
adding the container inside the Kernel-based Virtual Machine
(KVM) VM with its own small Linux kernel provided by the
kata runtime. When the VM is created, the container process
is spawned inside it by the kata agent and it works similarly
as a daemon for the container. The agent runs a gRPC Remote
Procedure Calls (gRPC) server with a virtual socket interface
using QEMU to expose as a socket on the host network. Thus,
any container using the kata runtime have all commands within
the container, and input/output streams, passing through the
virtual socker exported by the QEMU [10].

Kata runtime needs extra steps to provide network commu-
nication when compared to Docker. Since the container is hold



Fig. 3. Kata container architecture

inside a VM, TAP interfaces are needed for the VM network
connectivity which the single vEth pair cannot be handled
properly by the hypervisor [10]. In order to overcome this
container-VM incompatibility, Kata containers connects vEth
interfaces with TAP interfaces using traffic control (Figure 4),
redirecting the packets based on traffic control rules.

Fig. 4. Kata container network

Those extra configurations, and some packet redirecting and
mirroring, allow Kata containers to provide a solid network
communication for the containers.

V. NETWORK DRIVERS

Docker use Linux network interfaces by requesting them
to the kernel using the libnetwork library. It has chosen five
drivers to be part of its pluggable subsystem by default which
supply all the core networking functionalities:

• bridge: A virtual bridge can be seen as a switch, forward-
ing the packets between interfaces, allowing containers to
the same bridge network to communicate while providing
a level of isolation. The communication using bridge use
Linux IPtables to set the Network Address Translation
(NAT) rules to map properly the container IP and port
between the host IP address and port.

• none: A type of network driver mainly focused on secu-
rity and isolation. It does not configure any IP address
for the container, thus the container is not visible in the
network but the communication between containers using
this type of driver still happen employing the loopback
interface and Interprocess Communication (IPC) [11].

• host: The container network stack is not isolated from
the host network namespace. It shares the host network
stack and so it removes the container security layer
containers are build in, making it the least secure build-in
driver available with the best network performance when
associated with throughput [12].
Some features includes better performance since in a
network perspective, it provides navigation through the
host connection and doesn’t require any forwarding and
NAT, only a port from the host network. Since it uses the
host network stack, each container using the host driver
will not be configured any IP or Media Access Control
(MAC), but using the same from the host machine. The
communication for the containers inside the same host
network uses IPC [11].

• macvlan: A network driver able to configure multiple
Layer 2 MAC addresses and IP to each container Virtual
Network Interface (VNI), creating the ability to be seen as
a physical device in the network [12]. This driver requires
the host interface to be linked with the macvlan driver
in promiscuous mode, meaning the Network Interface
Controller (NIC) will accept every Ethernet packet sent
on the network, allowing the host to read packets intended
for other network devices.
There are two modes available: bridge mode and trunk
bridge mode. The first one allows all the traffic to be
through a physical device on the host while the latter
uses sub-interfaces, aligning with the 802.1q Virtual LAN
(VLAN), defined by tagging VLAN IDs and carrying up
to 4096 sub-interfaces connected to the host. The second
one traffic goes through an 802.1q sub-interface created
by Docker.

• overlay: This driver creates a distributed network among
Docker daemons, creating a Swarm which allows the
communication from different hosts inside the data link
layer. It works by creating a bridge, available only for
the containers inside the Swarm, a default ingress network
interface and a Virtual Extensible LAN (VXLAN) tunnel.
A VXLAN Tunnel Endpoint (VTEP) is connected to
each side of the tunnel and the bridge. When packages
or frames are in transition inside the inbound network,
whenever they are mapped to the MAC address of the
VTEP, the inbound network changes the header by adding
an identifier called the VXLAN network ID and encapsu-
lates the data to be sent over the underlay infrastructure.
After the transportation, the data is de-encapsulated and
sent accordingly to its destiny.

Since kata runtime follows the standardization of CNM, all
the functionalities used in standard runC of Docker will work



also on kata runtime. However, kata runtime is not possible to
use of the host network driver (details on Subsection VI-C).

VI. EXPERIMENTS, RESULTS & ANALYSIS

The purpose of the experiments is to verify the impact of
the extra security layer of the kata runtime and compare it
to runC (Standard Docker runtime) using different network
drivers (Section V). The metrics measured in the experiments
are latency and network throughput. However, when it comes
to virtualized communication, it is known that traffic does not
always go through a NIC. This happens because the source
and destination are on the same host, so the communication
management is done by the hypervisor, which implies CPU
consumption. Thus, these two metrics were also evaluated by
putting the host processor under stress. Two sets of tests were
performed:

1) Measurement of latency and maximum bandwidth with-
out CPU overhead; and

2) Measurement of latency and maximum bandwidth with
induced CPU overhead.

A. Measurement & CPU tools

In order to generate the workload and perform the mea-
surements, classical and widely tested tools were used for this
purpose:

• iPerf [13]: is used both to generate traffic and measure
the maximum possible network bandwidth. iPerf was
configured to do TCP communication;

• sockperf [14]: is used to measure the latency and the
sensibility of the network to latency; and

• stress-ng [15]: a tool to overload the CPU in order to
measure the network traffic under interference of hard-
ware resources

B. Testbed and experiments setup

The testbed environment was configured using a private IaaS
cloud available on LabP2D/UDESC. This cloud is based on the
cloud operating system OpenStack version Ussuri (Figure 5)
using multinode Charm setup.

The testbed (Figure 5) has 2 pre-allocated VMs using the
flavor: 4Gb RAM, 2 vCPU, and 20Gb HDD storage. The cloud
node in which the VMs were allocated has Intel Xeon E3-
12xx 2000MHz, 192Gb RAM, 3 x 1 Gb NICs, and 2Tb HDD
storage (CEPH). The VMs have installed GNU / Linux Ubuntu
version 18.04.5 LTS Server, and Docker Community version
20.10.2. All experiments were parameterized / automated
using shell script, and submitted remotely using SSH via VPN.

Among the containers, client-server pairs were created and
communication interfaces were configured by type. The ex-
periments are carried out by exchanging data through these
configured interfaces. Each set of tests comprises the following
experiments:

• (bridge, bridge);
• (host, bridge);
• (macvlan, macvlan); and
• (overlay, overlay).

Fig. 5. Testbed scenario example

A total of 15 tests for each server-client driver pair were
realized in order to provide statistically significant data. At
each test the VMs were destroyed, recreated, and reconfigured
to avoid caching. Four group of experiments performed:

• runC runtime without stress-ng;
• runC with stress-ng;
• kata runtime without stress-ng; and
• kata runtime with stress-ng.

Using the workflow (Figure 6) and for each client-server
pairs (bridge, bridge), (host, bridge), (macvlan, macvlan),
(overlay, overlay), the containers are installed with the tools
iPerf and sockperf, to capture the bandwidth and latency
respectively when communicating with each other.

Fig. 6. Sequence diagram illustrating the workflow of (macvlan, macvlan)
experiments

In experiments with induction load on the CPU, stress-ng
has been installed on the server pair container.



C. Results & Analysis

Kata Containers has a downside of its own runtime kata
due to the inability to use the host network. When using the
host network driver, the container is linked to the host network
stack, enabling the container to get the best throughput per-
formance since it does not need any type of forwarding. It is
simply not possible to directly access and establish this link to
the host network configuration from within the VM without re-
modifying the container network setup and possibly breaking
the host networking setup [16]. Thus, in the results of our
experiments the host network driver results for kata runtime
are set as 0 (latency and bandwidth). The none network driver
is also not tested because this drivers does not have any
network communication and it is more used to IPC.

Figure 7 reveals an expressive difference between results
of the two runtimes, in which runtime runC has the lowest
latency for all the drivers tested.

Fig. 7. Latency of each network without stress-ng

This result (Figure 7) is a consequence of how Kata contain-
ers implements the networking while providing extra security
encapsulation for the container. Runc uses the host kernel to
manipulate and separate the processes inside their own names-
paces, hence creating a container. This way the containers
have almost no extra steps to proceed the information between
processes and sockets to the containers isolated process and
networks, all inside the same system and level of abstraction.
Kata runtime has to implement a lot more extra steps to
create the actual communication inside the container while
maintaining the whole abstraction level by creating a new VM
and building containers inside it. Thus, for the communication
to flow from the host to the container, the communication
begin by IPC through the kata-shim-v2 whereas exist a virtual
socket aligned in the host. When the information hits the shim,
which holds the input and output for containers, it reaches a
VM. Thus, more IPC is required for the data to go through
from the shim to the kata-agent by using gRPC finally carrying
out the data to the container. In order to access the container
network namespace, the data has to be mirrored through from
a vEth pair connected through the Docker Bridge to the traffic
control interface, and again mirrored from the TAP to the eth0
container interface. Each step is added to the latency which
shows that the extra steps required for the communication has
quite a price for the runtime to maintain the security.

Due to the way the network driver was implemented in
the kata runtime, it is also expected to have an impact
on throughput Figure 8). The Swarm mode which uses the
overlay driver has the lowest bandwidth of TCP packets in our
results, and it is related to the latency and the overlay driver
implementation/architecture to provide the communication of
the containers.

Fig. 8. Bandwidth result by iPerf without stress-ng

The same experiments (Figure 9, Figure 10) with induced
CPU overhead revealed that runC suffers less than kata runtime
The reason for the drop in bandwidth is related to the CPUs
process queue. As the server container is handling multiple
CPU intensive requests by the stress-ng tool, the queue is
in high demand. As each packet overhead needs to be de-
encapsulated and information properly handled, it enters the
queue and spend most of its cycle time waiting since the CPU
is stalled.

Fig. 9. Latency of each network with stress-ng

Fig. 10. Bandwidth result by iPerf with stress-ng



As the data travel through the layers, each layer has to
encapsulate and de-encapsulate information and besides, if the
information transmitted is too large for the size of the network,
it has to be fragmented into smaller packages. Both concepts
need to be computed inside the CPU but if the CPU queue
is full all the time because of a process requiring most of
it resources, it will delay the processing of those processes.
Overtime the stalled time affects the amount of data being
transmitted over the network, influencing the final bandwidth
conveyed by the iPerf tool test.

VII. RELATED WORK

Although there has been a plenty of articles comparing the
performance of containers and virtual machines [17], [18],
only two articles were found specifically addressing different
container network drivers: [19], [20].

[19] presents a good description of the Docker drivers
using runtime runC, but does not address the kata runtime.
Several approaches used in this work served as a reference
for our article. However, the authors also did not address
CPU overhead and its impact on hypervisor-managed network
communications.

[20] does not provide a complete insight, and a better un-
derstanding, of how the network occurs between the runtimes
and how they differ from each other.

VIII. CONSIDERATIONS & FUTURE WORK

In virtualization and cloud solutions, the search for per-
formance and security is constant. While traditional Docker
containers (runC) enjoy good performance and consume few
computational resources, they have a shadow of security
aspects. In this sense, the evolution of containers to improve
security is natural. Kata Containers aims to achieve both by
trading off the performance while boosting the container se-
curity, spawning them each inside a complete new virtualized
QEMU/KVM VM.

In all tests, Docker runtime, runC, has achieved a lower
latency for each network driver than Kata Containers. While
latency is correlated to bandwidth, runC achieved a higher
bandwidth for all cases and scenarios as well.

When using the stress-ng tool to simulate a server being
used at its fullest, runC is slightly affected by it while Kata
Containers is more shacked, resulting in worse bandwidth
usage. As demonstrated, Kata Containers have a long way
to actually achieve the speed of containers while maintaining
the extra encapsulation security they created, but the security
trade-off is a necessary step to decrease chances of unau-
thorized access and solve some security flaws the container
technology possess, even at a severe cost on the network
communication.

Despite the result of the kata runtime in relation to the
runC, tests are also needed comparing Kata Containers with
traditional virtual machines (e.g., KVM) to measure the per-
formance. This is expected future work. Other future work
includes more driver combinations, as in this article we only
focus on one model. Research into cloud native architecture
to use as a test scenario is planned.

ACKNOWLEDGMENT

The authors would like to thank the support of FAPESC, and
LabP2D / UDESC.

REFERENCES

[1] Microsoft, “What is cloud computing,” https://azure.microsoft.com/en-
us/overview/what-is-cloud-computing/, December 2020.

[2] IBM, “What is virtualization?” July 2019. [Online]. Available:
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide

[3] Docker, “What is container,” https://www.docker.com/resources/what-
container, 2020.

[4] ——, “Docker overview,” https://docs.docker.com/get-started/overview/,
December 2020.

[5] N. Poulton, Docker Deep Dive: Zero to Docker in a single book. Packt
Publishing, 2020.

[6] OCI, “Runtime and lifecycle,” https://github.com/opencontainers/runtime-
spec/blob/master/runtime.md/, 2020.

[7] Ubuntu, “runc,” 2019. [Online]. Available:
http://manpages.ubuntu.com/manpages/focal/man8/runc.8.html

[8] ContainerD, “Containerd documentation,” https://containerd.io/docs/,
2021.

[9] OCI, “Overview,” https://opencontainers.org/about/overview/, 2020.
[10] Kata, “Kata architecture,” https://github.com/kata-containers/kata-

containers/blob/main/docs/design/architecture.md, October 2020.
[11] L. L. Mentz, W. J. Loch, and G. P. Koslovski, “Comparative experimen-

tal analysis of docker container networking drivers,” in 2020 IEEE 9th
International Conference on Cloud Networking (CloudNet), 2020, pp.
1–7.

[12] Docker, “Network overview,” https://docs.docker.com/network/, 2021.
[13] Iperf, “Iperf,” 2019. [Online]. Available: https://iperf.fr/
[14] Mellanox, “Sockperf,” April 2021. [Online]. Available:

https://github.com/Mellanox/sockperf
[15] Ubuntu, “Stress-ng manual,” 2019. [Online]. Available:

https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
[16] Kata, “Kata limitations,” https://github.com/kata-containers/kata-

containers/blob/main/docs/Limitations.md, May 2021.
[17] R. R. Yadav, E. T. G. Sousa, and G. R. A. Callou, “Performance

comparison between virtual machines and docker containers,” IEEE
Latin America Transactions, vol. 16, no. 8, pp. 2282–2288, 2018.

[18] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A comparative
study of containers and virtual machines in big data environment,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018, pp. 178–185.

[19] L. L. Mentz, W. J. Loch, and G. P. Koslovski, “Comparative experimen-
tal analysis of docker container networking drivers,” in 2020 IEEE 9th
International Conference on Cloud Networking (CloudNet), 2020, pp.
1–7.

[20] R. Kumar and B. Thangaraju, “Performance analysis between runc and
kata container runtime,” in 2020 IEEE International Conference on
Electronics, Computing and Communication Technologies (CONECCT).
IEEE, 2020, pp. 1–4.


