
Executing Distributed Applications on SDN-based
Data Center: a Study with NAS Parallel Benchmark

Anderson H. S. Marcondes, Gustavo Diel, Felipe R. de Souza,
Paulo R. Vieira Jr, Adriano Fiorese, Guilherme P. Koslovski

Graduate Program in Applied Computing – Santa Catarina State University – Joinville, SC – Brazil
anderson.marcondes@sfs.ifc.edu.br, {gustavo.diel, feliperodrigodesouza, paulorvj}@gmail.com,

{adriano.fiorese, guilherme.koslovski}@udesc.br

Abstract—Software-Defined Networking (SDN) paradigm has
decoupled data and control planes on traditional networks. In
this context, a logically-centralized controller, with full knowledge
on network resources and traffic loads, executes routing algo-
rithms to identify forwarding paths, while networking resources
(switches and routers) just work on packet forwarding. This
work contributes by executing and characterizing a well-know
distributed application, NAS parallel benchmark, atop an SDN-
based data center. A comparison with different flow routing
algorithms is presented, highlighting that an application can
reduce its runtime when applying a multi-path routing.

Index Terms—SDN, HPC, Data Traffic Characterization
I. INTRODUCTION

Maturity achieved by networking technologies, specially
in data centers, has consolidated the wide dissemination of
data experienced nowadays. Data Center-communication in-
frastructures are highly required and usually support business
operation: data is stored and processed in data centers, and af-
terwards delivered to users through the Internet. An example is
noted in Facebook data centers as up to 33% of an application
runtime is consumed by data transfer among servers [1].

Recently, the Software-Defined Networking (SDN)
paradigm has decoupled control and data planes on
network architectures increasing the range of management
options [2]. Such reorganization removes the exclusive
control traditionally built-in network equipment, enabling
an external control performed by a logically-centralized
controller. Indeed, SDN allows the application of routing
algorithms with full knowledge on the network topology, as
the controller has a combined view of networking resources
configuration (switches and routers) and traffic load, executing
specialized routing algorithms (the control plan) to identify
appropriated forwarding paths. Each decision is propagated
to corresponding network equipment, fulfilling flow tables
(data plan). In this scenario, the OpenFlow protocol [3]
was adopted by the academic community to standardize the
communication between devices and controllers.

SDN has been motivating the development of traffic en-
gineering approaches applied to data centers, and triggered
revisitation of application-oriented routing. Through traffic
characterization of hosted applications, administrators can de-
velop particular routing policies (e.g., load balancing, firewall,
multi-path) for optimizing the identified communication pro-

file. Therefore, each application can be individually analyzed
by the controller generating flow table entries that meet
Quality of Service (QoS) and Quality of Experience (QoE)
requirements. It is precisely in this context that the present
work contributes: the advantages of using SDN for hosting a
distributed application are evidenced by a traffic characteriza-
tion and by a comparison of routing approaches. A distributed
application commonly used to benchmark high performance
computing environments was selected for analysis: Numerical
Aerodynamic Simulation – NAS Parallel Benchmarks [4].
Each application composing NAS has different networking and
processing profiles. In this work, a data traffic characterization
of NAS is performed by collecting data from SDN switches.
Additionally, three forwarding policies are compared identify-
ing the NAS applications’ runtime.

This paper is organized as follows: Sec. II details the
characterization of the target application. An experimental
analysis of NAS executed atop an SDN-based topology with
distinct routing algorithms is detailed in Sec. III. Related work
are discussed on Sec. IV, while Sec. V concludes this paper.

II. CARACTERIZATION OF NAS Benchmark IN SDN

The NAS benchmark [4] selected as target is composed
of several applications with different communication patterns.
Moreover, NAS performance is directly related with data-
center network configuration and performance.Among the
available options for configuring NAS MPI (Message Passing
Interface) distribution, the A class applications, indicated for
scenarios with limited computing resources, were selected:
block tri-diagonal solver (BT), conjugate gradient (CG), em-
barrassingly parallel (EP), lower-upper Gauss-Seidel solver
(LU), multi-grid solver (MG) and scalar penta-diagonal solver
(SP).

The experiments were run with Mininet [5], and the experi-
mental scenario was composed of 4 hosts interconnected by an
Open vSwitch [6]. The control plane was managed by Flood-
Light controller [7] with some changes on its default routing
algorithm in order to keep the flow status in flow tables even
after the application execution. Mininet and Floodlight were
hosted on distinct servers.Characterization was accomplished
by collecting data directly from the switch. Periodically (each
10 seconds) the data was acquired and consolidated by an
external application. Tab. I sums up results, showing the978–1–5090–4671–3/16/$31.00 c© 2016 IEEE

Pkt Exec. (s) Pkt/s Vol. (MB) Mbps Pkt (B)
BT 20,569 298.85 68.83 48.04 0.16 2449
CG 62,555 26.98 2,318.57 137.23 5.09 2300
EP 189 123.85 1.53 0.01 0.00 78
LU 385,530 699.48 551.17 496.80 0.71 1351
MG 45,989 24.83 1,852.15 101.24 4.08 2308
SP 722,566 579.67 1,246.51 1,707.55 2.95 2478

TABLE I
NETWORK TRAFFIC OF THE NAS SUITE ON AN SDN TOPOLOGY.

1

3

2

4

BT

1

3

2

4

CG

1

3

2

4

EP

1

3

2

4

LU
1

3

2

4

MG
1

3

2

4

SP

Fig. 1. Communication pattern of NAS benchmark on an SDN infrastructure.

average of ten executions with a confidence interval of 95%.
For each application, it is informed the number of transferred
packets (# Pkt), the total run-time (Exec. (s)), the packets per
second rate (Pkt/s), the total data volume (Vol. (MB)), the
average bandwidth (Mbps), and the average packet size (Pkt.
(B)).

SP was the application with the highest bandwidth usage,
with 1.67 GB. EP has a non significant communication de-
pendency, sending a small amount of data, meanwhile CG
has the highest number of packets per second rate and the
highest average traffic rate, with 2,318.57 pkt/s and 5.09 Mpbs,
respectively. Fig. 1 shows flows proportionality for each appli-
cation. Dense edges represent intensive communication while
thinner ones denote low traffic. Data transfer proportionality
is analyzed per application, that is, there is no relationship be-
tween different scenarios. Virtual host 1 acts as the MPI master
node in charge of starting the execution. Consequently, host
1 has connectivity with all remaining hosts (MPI workers).
Regarding communication pattern, LU and MG have a ring-
based topology, while CG is based on pipelined execution.
As described by Tab. I, EP has low data traffic requirements,
basically composed of MPI environment initialization mes-
sages. Finally, SP pattern comprises an initial data distribution
step followed by data-intensive communication among MPI
workers. The characterization of NAS applications indicates
distinct communication patterns in terms of topology, volume
and bandwidth. This analysis highlights the complexity of
designing an efficient routing algorithm for distributed ap-
plications, as QoS requirements differ even for applications
implemented over a single communication tool.

III. ROUTING ALGORITHMS STUDY

Three algorithms were selected for implementation on
Floodlight. These algorithms basically differ on how to explore
the available paths in a fat-tree network topology [8].

A. Experimental Scenario

The testbed consists of three 4 GB RAM, AMD Phenom II
X4 PCs running Ubuntu 14.04, interconnected by 1 Gbps links.
One PC executed Floodlight, while the others are running,
each one, 8 servers and 10 virtual switches. Switches were
created using Open vSwitch and Mininet was adapted to allow
its execution comprising multiple physical hosts.

Fig. 2. Runtime of NAS benchmark in an SDN managed fat-tree topology.

B. Routing Algorithms

1) Shortest Path (SP-F): The default Floodlight routing
module forwards packets through legacy or SDN supporting
equipment. Route is selected by looking for the shortest path
between sender and receiver in terms of hops. Considering
fat-tree topology, although there are several paths between a
sender A and a receiver B, the deterministic pattern of the
Forwarding module always selects the same forwarding path
for data packets between A and B.

2) Random Selection (RS): In order to set a baseline to
results comparison, a random selection routing module was
implemented. Among the multiple existent paths between a
sender A and a receiver B, this module randomly selects, at
each query, a path to assign to the given flow.

3) Round-robin over Multiple Paths (RR MP): The fat-tree
topology allows communication between a sender A and a re-
ceiver B using multiple paths between access, aggregation and
core switches. To exploit this feature, a routing algorithm that
performs a round-robin path selection among the possibilities
of existing paths between A and B has been implemented.
Paths are sorted in ascending order by the number of hops.
In short, for each forwarding request between A and B, the
SDN controller identifies the existing paths, responding to the
query with a circular algorithm among the candidate paths.

C. Result Analysis

Fig. 2 presents the selected NAS applications’ runtime.
Results represent an average of ten executions considering a
95% confidence interval. Characterization discussed in Sec. II
indicates that EP presented the lowest traffic volume. Thus,
due its communication structure (Fig. 1), EP’s runtime is only
impacted by processing start up and finish messages (com-
position of the MPI environment). In this case, EP showed
equivalent results for the shortest path and round-robin routing
approaches. On the other hand, a small overhead was identified
for the random paths selection routing approach (about 20%).

MG application sends the second highest packets rate per
second (Tab. I) and its communication pattern is a non-
blocking ring. As communication occurs between multiple
pairs of source and destination asynchronously, the burden of
the selection of shortest paths is approximately 29% compared
to the random and round-robin path selection algorithms
(which present equivalent results considering standard devi-
ation). LU application has the same communication pattern

of MG one. However, a greater volume of data is exchanged
while the average throughput is decreased. In this case, the
already identified communication pattern is preserved. Thus,
the shortest path routing approach is slower than the round
robin one (RR MP is approximately 1.8 times faster).

According to Fig. 1, the communication pattern for BT
is composed of an uniformly distributed traffic among the
nodes with few travelling packets per second. Once more, the
multiplicity of paths in the RR MP approach has resulted in
lower BT runtime, while the shortest path selection approach
showed the bigger one. CG application presents the highest
data traffic per second (Tab. I). Its communication pattern
can be represented as a pipeline execution (Fig. 1). For
this application, the random and round-robin path selection
approaches present equivalent and superior results compared
to the shortest path one. Finally, SP is the application with the
largest volume of data traffic, especially on the work nodes. As
in other cases, the approach using round-robin over multiple
paths resulted in shorter runtime. Summing up, applications
running with RS achieved a better performance compared
to SP-F. Indeed, the load balancing of RR MP significantly
reduced the runtime of the tested NAS suite applications.

IV. RELATED WORK

Both the characterization of applications and definition of
specialized controllers have been addressed in the literature.
An extended SDN architecture has been proposed by Mekky
and colleagues [9] to allow the inspection of data beyond
layers 2 and 4 of the TCP/IP stack. Packets classified as table
miss are intercepted between OVS switches [6] and controller.
Afterwards, they are analyzed and the forwarding decision is
made by consulting a table representing application informa-
tion. The architecture allows most of the network processing
occurs in the data plane, reducing the controller overhead.
Egilmez and colleagues [10] have provided an end-to-end QoS
multimedia delivery controller, in which QoS requisites were
translated as forwarding delay that was minimized.

The Youtube video streaming service was the target of
Jarschel et al. [11] to show that the knowledge of the appli-
cation state allied with the SDN control can improve the user
experience when compared to traditional QoS methods. The
video buffer information is sent to the controller, responsible
for prioritizing traffic when the buffer does not contain enough
data to sustain the video quality. On its turn, Watashiba et
al. [12] proposed a system for scheduling tasks in clusters
exploring the knowledge of the cluster topology to optimize
the NAS suite. Each set of the NAS suite represented a user
of the cluster. However, the traffic optimization between pro-
cesses have not used information extracted from applications.
An open QoS policy management framework is presented by
Bari and colleagues [13]. The framework includes a moni-
toring module guided by metrics defined by the application
administrator. When a dissatisfaction threshold is reached,
the controller is triggered to reorganize the data traffic. To
accomplish that, it is usually applied circular forwarding on
the shortest paths (similar to RR MP discussed in Sec. III).

V. CONCLUSION

The SDN paradigm introduced the separation of control and
data planes, allowing an uniform management of communica-
tion devices. In this scenario, a logically centralized controller
has full knowledge of the devices. In order to investigate the
characterization of distributed applications and the impact of
routing algorithms in total runtime, this paper presented a
study of NAS suite. Different processing and communication
phases where identified, emphasizing the complexity in defin-
ing a unique algorithm for routing flows. An experimental
analysis compared the NAS applications’ runtime using differ-
ent routing algorithms. Results indicated that the shortest path
flow routing approach induces the formation of bottlenecks
and consequently increases the applications’ runtime. In the
target topology (fat-tree), the routing approach that explored
the multiple possible paths among the nodes has reduced the
runtime of applications with intensive communications.

ACKNOWLEDGEMENTS

The authors would like to thank to PROMOP/PROAP
support as well as to UDESC LabP2D.

REFERENCES

[1] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Man-
aging data transfers in computer clusters with orchestra,” SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109, Aug. 2011.

[2] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks,” Int. Journal of High
Performance Computing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[5] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. of the 9th
SIGCOMM Hotnets. ACM, 2010.

[6] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of Open vSwitch,” in Proc. of the Conf.
on Networked Systems Design and Implementation. USENIX, 2015.

[7] Floodlight, “Floodlight is an open SDN controller,”
http://www.projectfloodlight.org/floodlight, 2012.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Aug. 2008.

[9] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-aware data plane processing in SDN,” in Proc. of the Third
HotSDN. ACM, 2014, pp. 13–18.

[10] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-
end quality of service over software-defined networks,” in Signal Inf.
Processing Assoc. Annual Summit and Conf. (APSIPA ASC), Dec 2012.

[11] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-
based application-aware networking on the example of YouTube video
streaming,” in EU Workshop on Software Defined Networks, Oct 2013.

[12] Y. Watashiba, S. Date, H. Abe, Y. Kido, K. Ichikawa, H. Yamanaka,
E. Kawai, S. Shimojo, and H. Takemura, “Efficacy analysis of a SDN-
enhanced resource management system through NAS parallel bench-
marks,” The Review of Socionetwork Strategies, vol. 8, no. 2, 2014.

[13] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop:
an autonomic QoS policy enforcement framework for software defined
networks,” in Future Networks and Services (SDN4FNS). IEEE, 2013.

