
Predicting the Performance Impact of Increasing
Memory Bandwidth for Scientific Workflows

Nelson Mimura Gonzalez, Jose Brunheroto, Fausto Artico, and Yoonho Park
IBM T. J. Watson Research Center, New York, USA – E-mail: {nmimura, brunhe, fausto.artico, yoonho}@us.ibm.com

Tereza Carvalho
Escola Politécnica, University of São Paulo, Brazil – E-mail: carvalho@larc.usp.br

Charles Christian Miers, Mauricio Aronne Pillon, and Guilherme Piegas Koslovski
Santa Catarina State University, Joinville, Brazil – E-mail: {charles.miers, mauricio.pillon, guilherme.koslovski}@udesc.br

Abstract—The disparity between the bandwidth provided by
modern processors and by the main memory led to the issue
known as memory wall, in which application performance be-
comes completely bound by memory speed. Newer technologies
are trying to increase memory bandwidth to address this issue,
but the fact is that the effects of increasing bandwidth to appli-
cation performance still lack exploration. This paper investigates
these effects for scientific workflows focusing on the definition
of a performance model and on the execution of experiments to
validate the rationale for the model. The main contribution is
based on two observations: memory bound applications benefit
more from an increase to memory bandwidth, and the effects
of improving bandwidth for a particular application gradually
diminish as bandwidth is increased.

I. INTRODUCTION

Current main memory is able to provide less than 10% of
the bandwidth of high-end multi-core processors [1], which
explains why for so many applications, especially scientific
workflows, performance is bound by memory resources, either
bandwidth or latency [2]. Moreover, intensive use of the mem-
ory due to multiple concurrent requests leads to an increase in
contention latency [3], culminating in the infamous memory
wall [4] in which application performance becomes completely
dependent on memory speed.

Newer technologies such as the Hybrid Memory Cube
(HMC) and High Bandwidth Memory (HBM) aim at providing
much higher bandwidths than traditional DIMMs in order to
address this memory wall. However, the benefit of adopting
these technologies largely depend on the application being
optimized. For some cases the idle latency will probably
increase due to the higher complexity of these devices [5].
On the other hand, if applications present sufficient memory-
level parallelism, shared-resource contention among concur-
rent requests should improve due to higher bandwidth. The
fact is, the performance effects of improving bandwidth still
lack exploration.

This paper presents an investigation on the effects of im-
proving memory bandwidth to scientific workflows, then it
defines a performance model that can be used to predict the
impact of increasing bandwidth for a particular application.
Finally, this paper presents a set of experiments conducted to
validate the model and its rationale. The main contribution

of this paper is based on two key observations: (i) Memory
bound applications benefit more from an increase to available
memory bandwidth than applications whose performance is
not constrained by memory latency and/or bandwidth; and (ii)
The effects of improving memory bandwidth for an application
gradually diminish as the available bandwidth is increased,
to the point that having more bandwidth does not affect
application performance at all.

Other contributions of this paper include: (a) The definition
of the η × F curve (Sections III-A and III-B) that correlates
the fraction of total bandwidth initially used by an application
(F ) and how efficiently (η) an increase to total bandwidth is
converted into performance improvement; (b) The definition of
a model and a numerical iterative method (Section III-C) to de-
termine the performance improvement of an application after
increasing the available memory bandwidth; (c) The memory
bandwidth experiments (Sections IV and V) that validate the
two observations for a new set of applications executed in a
newer environment and then compared to the values obtained
by using the experimental results from Radulovic et. al. [5];
and (d) The methodology used in the experiments (Section VI),
which can be reproduced to verify the results and to generate
new data sets to be used for performance prediction purposes.

The remainder of this paper is organized as follows: Sec-
tion II presents the background concepts and related work;
Section III presents the performance model, including the
η×F curve and the iterative method to predict the performance
improvement; Section IV presents the methodology adopted
for the experiments; Section V presents the experimental
results used to validate the initial observations and the per-
formance model; Section VI presents a comparison of these
experimental results to the ones generated using the literature;
and Section VII presents the conclusion and future work.

II. BACKGROUND & RELATED WORK

“The first hardware-related [design] issue is memory band-
width: the benchmarks suggest that it is not keeping up with
CPU speed. [...] If memory bandwidth does not improve
dramatically in future machines, some classes of applications
may be limited by memory performance” [6]. This excerpt,
extracted from a 1990 publication by John Ousterhout, reveals



Fig. 1: Memory latency x bandwidth curve. Latency exponentially increases as
the amount of bandwidth used by the application approximates the maximum
sustained bandwidth. Extracted from [3] and [10].

that the disparity between CPU and memory speed was already
a concern decades ago. Likewise, Richard Sites stated in 1996
that “chips are largely able to execute code faster than we
can feed them with instructions and data” [7]. This increasing
gap leveraged the relevance of the memory subsystem and its
hierarchy, rendering it as the main component that significantly
affects overall system performance [8].

The memory wall issue was formalized by Wulf and McKee
in 1994 [4]. The rationale is based on the fact that the rate
of improvement in microprocessor speed vastly exceeded the
rate of improvement in DRAM memory speed over time.
Average memory access time essentially depends on cache and
DRAM access times [1]. Consider that cache speed matches
processor’s performance (e.g., on-chip cache). Even assuming
a perfect cache, wherein misses are only due to accessing
previously unreferenced locations, the miss rate is small but
not zero. Consequently, as cache and DRAM access times
diverge, the average memory access time will grow and system
performance will degrade, thus hitting the infamous wall. For
instance, a program with 33% of its instructions referencing
memory implies on average a memory access every three
instructions. The wall is hit in this case if the average memory
access time exceeds three instruction times. At this point the
performance is completely dependent upon memory speed,
hence having a faster processor would not affect wall-clock
time to execute this program under these circumstances.

Performance gap between processor and memory since 1980
has increased [1], [9]. Processor performance observed an
increase of 25% per year until 1986, then 52% until 2000, then
20% between 2000 and 2005, and no change in performance
(per-core) thenceforth. In contrast, memory had an overall
improvement of 7% per year in terms of latency. After 2005
processor performance on a per-core basis stopped improving.
Meanwhile, memory continued to slowly improve but not
nearly enough to substantially reduce the gap.

DRAM main memory is able to provide less than 10% of the
bandwidth of high-end multi-core processors [1]. Originally,
the memory wall issue was defined in terms of latency, not
bandwidth [5]. However, there is an intrinsic relationship
between the two. Jacob [3] and Srinivasan [10] present a curve
correlating sustained memory bandwidth and the correspond-

ing average latency per request. An example of such curve
is presented in Figure 1. The maximum sustained bandwidth
of the system (10 GB/s in this example) is the maximum
bandwidth that could be effectively used by an application,
generally between 65% and 75% of the theoretical peak [3].
Essentially, this curve reveals the access time cost to use
the available bandwidth. Jacob and Srinivasan discretize three
regions from this curve:

a) Constant region: Latency is nearly constant up to 40%
of sustained bandwidth. In this region the average latency is
close to the idle latency of the system. Performance is not
limited by memory bandwidth, either because the application
is not memory bound [11] or due to abundance of resources.

b) Linear region: Latency increases almost linearly with
bandwidth demand in the region comprising 40% to 80%
of sustained bandwidth. Average latency starts to increase
due to contention overhead introduced by numerous memory
requests. Performance degradation starts to be observed and
the application is considered to be moderately memory bound.

c) Exponential region: Latency rapidly increases and can
be many times the idle latency when bandwidth demand is in
the region between 80% and 100% of sustained bandwidth.
System performance clearly is limited by available memory
bandwidth and the application is completely memory bound.

DRAM latency is subdivided in two components [10]: idle
latency, the round trip time for a memory request with no other
concurrent requests to the memory controller; and contention
latency, the overhead due to other pending requests. Ideally,
applications should operate in the constant or at least linear
region, otherwise contention drastically increases whilst appli-
cation performance decreases and becomes memory bound.

Several technologies were proposed to address the memory
wall, such as Intelligent RAM [9], Rambus Direct DRAM [12],
and Double Data Rate (DDR) devices. Contemporary ad-
vancements include 3D-stacking techniques to support much
higher bandwidths than traditional DIMMs, such as the Hybrid
Memory Cube (HMC) [13] and the High Bandwidth Memory
(HBM) [14]. The HMC should be able to deliver up to 15x the
bandwidth of a regular DRAM, with a per-device bandwidth
of 480 GB/s. Similarly, HBM maximum bandwidth reaches
256 GB/s and it can combined to other DIMMs.

These memory technology trends indicate that high-
performance DRAM has always strived to provide higher
bandwidth, not necessarily reducing latency. Patterson [15]
shows that from 1980 to 2000 memory bandwidth observed
an improvement of 123x while latency had a much smaller 4x
improvement. One of the reasons is the increase in number of
transistors per chip (Moore’s law), benefiting bandwidth but
leading to larger die sizes (e.g., 35 mm2 DRAMs to 204 mm2

DDR SDRAMs). The distance sets an inherent lower bound
to latency, and delays on long word and bit lines represent the
largest part of row access time of a DRAM.

Nevertheless, Radulovic et al. [5] point that higher band-
width may lower average latency if the applications of-
fer sufficient memory-level parallelism (MLP), which is re-
lated to the number of outstanding cache misses that can



be generated and executed by overlapping multiple off-
chip accesses [16] (including instruction fetches, loads, and
prefetches). Radulovic et al. show that 3D devices do not
change the idle-system memory latency – in fact, they will
probably increase baseline latency due to higher complexity.
On the other hand, full-system memory latency considering
shared-resource contention among concurrent memory re-
quests should drastically improve due to the higher bandwidth,
according to the bandwidth-latency curve and its three regions.

III. MEMORY BANDWIDTH MODEL

A. Curve η × F
The core rationale for the proposed memory band-

width model is based on the fact initially observed by
Radulovic et al. [5] and emphasized here: memory bound
applications benefit more from an increase in total available
bandwidth than applications that are not memory bound.
This means that there is a proportional correlation between
the amount of effective bandwidth B originally used by the
application and the observed improvement IB in this effective
bandwidth after increasing total available bandwidth.

The model starts with the definition of an efficiency metric
η as the ratio between IB and the increase IS in available
sustained bandwidth obtained after incrementing the total
bandwidth, as defined by η = IB

IS
. This metric represents

how effectively the increase in sustained bandwidth (fraction
of the total theoretical peak) is converted into application
performance in the form of available bandwidth for memory
operations and memory bound regions. A description of the
variables is presented in Table 1. Parameters without the prime
symbol correspond to values obtained before the increase
in the memory bandwidth, while parameters with the prime
symbol correspond to values obtained after the increase.

Table 1: Variables considered in the calculations.

Description Formula

B Effective memory bandwidth used by application before
increase in memory bandwidth.

measured

S Total sustained bandwidth measured before increase in
memory bandwidth.

B

F Fraction of sustained bandwidth used by application before
increase in memory bandwidth.

B/S

B′ Effective memory bandwidth used by application after in-
crease in memory bandwidth.

measured

S′ Total sustained bandwidth measured after increase in mem-
ory bandwidth.

B′

F ′ Fraction of sustained bandwidth used by application after
increase in memory bandwidth.

B′
/S′

IB Increase in effective memory bandwidth
due to increase in total available memory bandwidth.

B′ − B
B

IS Increase in total sustained memory bandwidth
due to increase in total available memory bandwidth.

S′ − S
S

For exemplifying this metric, Table 2 analysis the results ob-
tained by Radulovic et al. [5] with different applications. These
results reinforce the argument for correlating the bandwidth
originally used by an application and the performance im-
provement obtained after increasing available memory band-

width. For example, QE shows a relatively high initial band-
width utilization (B = 35.2 GB/s, a fraction F = 65.0%
of available bandwidth) and after increasing the clocks the
effective bandwidth used by the application improves by
IB = 8.6%, representing an efficiency of η = 58.5%. On
the other hand, GROMACS shows a lower initial bandwidth
utilization (B = 7.0 GB/s, a fraction F = 13.0% of available
bandwidth) and after increasing the clocks the bandwidth used
by the application improves by only IB = 1.6%, leading to a
much lower efficiency of η = 10.9%.

Table 2: Metrics calculated for the experimental results obtained by
Radulovic et al. [5].

Application B F B′ F ′ IB η

STREAM 54.1 GB/s 100.0% 62.1 GB/s 100.0% 14.7% 100.0%

QE 35.2 GB/s 65.0% 38.2 GB/s 61.5% 8.6% 58.5%

ALYA 31.1 GB/s 57.4% 32.2 GB/s 51.9% 3.7% 25.2%

GROMACS 7.0 GB/s 13.0% 7.1 GB/s 11.5% 1.6% 10.9%

NAMD 3.7 GB/s 6.8% 3.7 GB/s 5.9% 0.3% 2.0%

Fig. 2: Curve η × F showing the efficiency factor η as a function of
the fraction F of sustained bandwidth originally used by the application
and linearization of each region (H and L). Applications with higher F
demonstrate a better efficiency to convert bandwidth increase into application
performance. Regions H and L are separated by an abrupt slope marked
by point T , representing the threshold between memory bound and non
memory bound applications. Finally, A and B are examples of applications
with memory bound application and not, respectively.

This correlation becomes even clearer after plotting these
variables as depicted in Figure 2. The figure shows the
efficiency factor η as a function of the initial fraction F
of available bandwidth used by the application. The curve
is obtained by interpolating the data points highlighted in
Table 2. Applications with comparably high initial bandwidth
utilization (thus higher F ), such as QE and ALYA, exhibit
a superior efficiency factor than applications with lower F ,
such as GROMACS and NAMD. Again, this implies that
applications that are completely or at least partially memory
bound benefit more from an increase in available memory
bandwidth than applications that are not memory bound.



B. Regions

Two main regions can be distinguished in the curve. One
region, comprising F between 65% and 100%, represents
the memory bound applications with η between 60% and
100%. The other region, comprising F between 15% and
50%, represents non memory bound applications with a low
efficiency η, between 2% and 20%. These regions can be
associated to the memory regions identified by Jacob [3] and
Srinivasan [10]. The region with high η corresponds to their
linear and exponential regions (see Figure 1), with bandwidth
utilization higher than 50% in which contention plays a key
role in application performance. Conversely, the region with
low η corresponds to the constant region, wherein application
performance is not limited by memory bandwidth.

As observed by Radulovic et al. [5], improving memory
bandwidth does not affect performance for applications in the
constant region as these applications do not suffer from con-
tention latency penalties. On the other hand, if the application
is in the linear or exponential memory regions, a significant
portion of latency comes from collisions from concurrent
memory requests, consequently upgrading bandwidth may
reduce contention and thus improve performance.

Formally, region H , delimited by points H1 and H2, repre-
sents the applications with high memory bandwidth utilization,
or applications in the memory bound region. In contrast,
region L, delimited by points L1 and L2, represents the
applications with low memory bandwidth utilization. The
line defined by T (F ≈ 60% in this example) is the threshold
that distinguishes memory bound applications, representing the
transition point from the constant memory region to the linear
and then exponential regions from Jacob and Srinivasan. These
regions can be described as follows:

η =


H2y −H1y

H2x −H1x

· (F −H2x) +H2y , T < F ≤ 1

L2y − L1y

L2x − L1x

· (F − L1x) + L1y , 0 ≤ F ≤ T

Assuming that H2 = 1, L1 = 0, and H1x = L2x = T :

η =


1− 1−HT

1− T
· (1− F ), T < F ≤ 1

LT
T
· F , 0 ≤ F ≤ T

(1)

Where LT and HT are the values of η immediately before
and after the threshold T , respectively. These expressions can
be used to calculate η for a particular value of F . For the
exemplary point A, Ax = 0.80, T = 0.60, and HT = 0.55.
Calculating the efficiency factor using the first expression of
Equation 1 results in ηA = 0.78. Contrastingly, for point B,
Bx = 0.30 and LT = 0.30, thus ηB = 0.15. This means

that for application A 78% of an increase to total available
bandwidth is translated into application effective bandwidth,
while for B only 15% of this increase is transformed into
application performance.

These curves and the threshold T define a clear transition
point that distinguishes applications that are memory bound.
The expressions defined in Equation 1 provide a method
to determine the efficiency η with which an increase to
memory bandwidth is translated into application performance.
Moreover, the abrupt slope around T shows that after this
threshold the effect of increasing bandwidth becomes much
lower, which reflects the experiments and conclusions from
Jacob and Srinivasan and their memory regions.

C. Discretization and Iterative Method

Using the results for application A from Figure 2 (F = 0.80,
ηA = 0.78), suppose that a new increase factor is applied to
memory bandwidth, doubling the available sustained memory
bandwidth. Applying the efficiency factor, this means that the
78% of this increase is translated to effective bandwidth, thus
I ′B = 0.78. Using the notation B′ and B′′ to indicate the
application bandwidth before and after this new increase, this
means that B′′ = B′ + 0.78 and B′ = 1.78B′. However, the
new sustained bandwidth is S′′ = 2S′, and the new fraction
F ′′ of sustained bandwidth can be generalized as:

F ′′ =
B′′

S′′
=
B′ + I ′BB

′

S′ + I ′SS
′ =

(1 + I ′B)

(1 + I ′S)
· F ′ (2)

The final expression from Equation 2 shows that except for
STREAM, in which IB = IS as η = 1, every time an increase
is applied to sustained memory bandwidth the application will
absorb just a part of it and, consequently, the fraction of the
total available bandwidth gradually diminishes (F ′′ < F ′).
Moreover, this also shows that calculating the increase in
effective bandwidth used by the application in a single step is
not correct, as the efficiency factor is a function of the fraction
F which continuously varies as the increase is applied to the
application. In this sense, a simple experiment to show this
discrepancy is to divide the calculation above in two steps,
considering two increases of I ′S =

√
2 − 1 = 0.41 instead of

applying a single increase of I ′S = 1.

(0) F ′ = 0.80, η = 0.78

(1) I ′S = 0.41→ I ′B = 0.32 ∴ B′′ = 1.32B′

F ′′ = 0.75→ η = 0.70

(2) I ′S = 0.41→ I ′B = 0.29 ∴ B′′ = 1.70B′

F ′′ = 0.69

Note that not only the final fraction F ′′ differs from the
first calculation, but also the final value of B′′. This suggests
that the calculation should be done in parts, and the smaller
the increments the more precise the calculation should be. It
is possible to control these increments by gradually increasing
the sustained bandwidth value. Let SF be the final value for
the sustained bandwidth, Si the intermediate values, and α



the increment factor. Breaking the calculation in two steps,
for example, leads to the following:

S0 = S′

S1 = S0 + S0 · α = S0 · (1 + α)

S2 = S1 + S1 · α = S1 · (1 + α) = S0 · (1 + α)2

= SF

This expression can be extended for k increments of α:

Si = S0 · (1 + α)i, 1 < i < k

S0 = S′, Sk = SF

α =
k
√
SF
S0
− 1

(3)

For each iteration i the value of Si is incremented by α,
consequently IS = α. Applying the currently known efficiency
factor, ηi−1, it is possible to calculate the new value for Bi
and then Fi using expressions from Equation 3:

Bi = α · ηi−1 · (Bi−1 + 1)

Fi =
Bi
Si

=
α · ηi−1 · (Bi−1 + 1)

S0 · (1 + α)i
(4)

The expressions from Equation 4 calculate the value of
the effective bandwidth B used by the application and its
representative fraction F for iteration i. The value of Fi is
then used to obtain the new value for ηi, using the expressions
from Equation 1. A summary of all these steps is presented in
Algorithm 1. After completing the final loop, Bk represents
the final effective bandwidth. The overall speedup is calculated
by comparing this number to the initial value B0. Moreover,
the final value for the fraction Fk represents the new point in
the curve that the application is located at.

Algorithm 1 Iterative method to compute B.

1: B0, S0, S ← bandwidth values
2: F0 ← Table 1
3: η0 ← Equation 1
4: k ← number of iterations
5: α← Equation 3
6: for i=1 to k do
7: Si ← Equation 3
8: Bi, Fi ← Equation 4, using ηi−1
9: ηi ← Equation 1, using Fi

10: end for

A visual example of this dislocation over the curve is
observed in Figure 3. This example is based on the numerical
results of applying IS = 1 in two steps (α = 0.41, k = 2).
The initial value of F is 0.80, then it becomes 0.75 after the
first iteration, and 0.69 after the second one. Visually, this is
represented by dislocating the point A to the left on the X-
axis (F ). Its final state is represented by point A′. This effect
corroborates the observation regarding the diminishing returns
of applying a speedup factor to memory bandwidth. Given

Fig. 3: Example of the dislocation over the curve.

the same application and infrastructure (run time) properties,
the effects of increasing bandwidth gradually decrease to the
point that having more available bandwidth do not improve
application performance at all (i.e., application reaches a
point in the curve with very small η, requiring a very large
increase factor to yield a substantial IB). This corresponds
to the application reaching the constant memory region from
Jacob [3] and Srinivasan [10].

IV. EXPERIMENTAL METHODOLOGY

Section III presented the memory bandwidth model pro-
posed in this work. The model was built based on the
concepts exposed in Section II and using the experimental
results obtained by Radulovic et al. [5]. The next step of this
investigation was to validate the model and the assumptions
by executing experiments on a new hardware and software
platform to observe the same patterns and behaviors. This
section presents the methodology used for these experiments,
including the experimental platform (IV-A), the method to vary
bandwidth (IV-B), the applications selected for testing (IV-C),
and the tools developed for analysis (IV-D).

A. Platform

The experimental platform is based on the IBM Power
System S822LC model 8335-GTA (codename Firestone) [17].
Sixteen nodes were available for the tests, but only one node
was used per test. Each node contains two POWER8 sockets
at 3.5 GHz with ten cores each and eight hardware threads
per core, totalling 160 hardware threads per node. Moreover,
each node has 512 GB of main memory subdivided in eight
memory risers, as illustrated by Figure 4. The theoretical peak
bandwidth between a socket and a riser is 28.8 GB/s.

B. Bandwidth Variation

The methodology used to vary bandwidth for our exper-
iments is different from Radulovic et al. [5]. They varied
bandwidth by changing the memory clocks (from 1066 MHz
to 1333 MHz). In our case the bandwidth was varied by phys-
ically removing memory risers, leading to different bandwidth



Fig. 4: Detail of Firestone node showing memory risers connected to two
POWER8 sockets. Extracted from [17].

configurations. Risers are organized in three groups: #1, #2,
and #3 (see Figure 4). Risers #1 must always be present
and removal must start from group #3, then group #2. All
risers from the same group must be removed, leading to the
possible configurations listed in Table 3. The experimental
results presented in this paper correspond to the transition from
configuration II to I, going from half to full bandwidth.

Table 3: Possible configurations for memory risers.

Configuration Total Peak Relative

I #1 + #2 + #3 230.4 GB/s 100%

II #1 + #2 115.2 GB/s 50%

III #1 57.6 GB/s 25%

C. Applications

Four applications were selected: STREAM [18], GTC-
P [19], HPCG [20], and MILC [21]. STREAM is a well known
benchmark for measuring sustained memory bandwidth. The
others are part of the applications and benchmarks for the
Crossroads/NERSC-9 procurement (APEX), thus representing
the applications that will be executed or used to evaluate
future systems and architectures. GTC-P, HPCG, and MILC
were executed with small problem sizes to fit a single node.
STREAM was executed to yield results relative to an array size
of one billion elements each (24 GB of total memory utiliza-
tion). All applications were compiled and executed with MPI
support. Memory and MPI process affinity was guaranteed
via rankfiles, mapping each MPI process to a single core. This
allows the execution of experiments with different process/core
configurations and also different memory bandwidths. The
final results presented in this paper are relative to runs with
20 MPI processes to reach maximum bandwidth utilization,
except for MILC that was executed with 16 cores (1 MPI
process per core).

D. Tools

Sustained bandwidth S can be easily measured by
STREAM. The instrumentation tools provided by the
Barcelona Supercomputing Center (BSC) were used to mea-
sure the effective bandwidth B used by applications. In
particular, Extrae was used to collect information from three
POWER8 performance counters: PM_MEM_READ: Loads from

memory; PM_MEM_PREF: Prefetches from memory; and
PM_L3_CO_MEM: Cast-outs from L3 to memory. Results
were processed and grouped using intervals of two seconds,
although data were collected with a much higher resolution (µs
and ns), generating very large trace files (larger than 50 GB).

V. RESULTS

The results for STREAM, GTC-P, HPCG and MILC are
decpited in Figures 5, 6, 7 and 8, respectively. In Figure 5
we observe the results running STREAM using full and half
risers. Each graph shows the effective read, write, and total
bandwidth. The X-axis represents the interval numbers, each
interval being two seconds long. For all applications the read
bandwidth is higher than the write bandwidth, and the total
bandwidth is the sum of both components.

Fig. 5: Results for STREAM using full and half risers.

A summary of these results is presented in first line of
Table 4. For full risers configuration the theoretical peak
bandwidth is 230.40 GB/s and the sustained bandwidth S
measured by STREAM was 183.84 GB/s, around 80% of
the peak (consistent to the observations from Jacob [3]). For
half risers the theoretical peak is 115.20 GB/s and the value
measured by STREAM was 89.77 GB/s, around 78% of the
peak. The increase IS in sustained bandwidth is 104.79%,
which is a little bit over 100% that would represent dou-
bling the bandwidth. This shows that removing the memory
risers effectively changes the memory bandwidth available
to applications. STREAM was also used to calibrate the
instrumentation tool developed for collecting the performance
counters for the other applications. The discrepancy between
the results reported by STREAM and the values calculated
based on the collected metrics is lower than 5%.

GTC-P (Figure 6) uses a very small portion of memory,
with a total of 15.74 GB/s for half risers (17.53% of sustained
bandwidth) and 16.36 GB/s for full risers (8.90% of sustained
bandwidth). A summary is presented in Table 4.

Compared to STREAM (Figure 5) and GTC-P (Figure 6),
HPCG (Figure 7 and Table 4) shows a slightly higher band-
width fluctuation during execution. The write bandwidth is



Fig. 6: Results for GTC-P using full and half risers.

Fig. 7: Results for HPCG using full and half risers.

almost irrelevant compared to the read portion. Finally, MILC
(Figure 8) clearly is the application with longest duration
among the ones executed for these experiments. A summary
of the calculations for MILC is presented in Table 4. Observe
that MILC was executed with 16 cores, thus the sustained
bandwidth was 70.06 GB/s and 142.34 GB/s for half risers
and full risers, respectively.

VI. ANALYSIS

A summary of all experimental results is observed in
Table 4. This table shows the initial effective bandwidth B,
the fraction F of sustained bandwidth, the new effective
bandwidth B′ (after increasing the available bandwidth by
restoring the full risers configuration), the new fraction F ′,

Table 4: Summary of all experimental results.

B (GB/s) F B′ (GB/s) F ′ IB η

STREAM 89.77 100.0% 183.84 100.0% 104.79% 100.0%

MILC 56.25 80.29% 91.52 64.29% 62.68% 60.76%

HPCG 69.30 77.19% 101.75 55.35% 46.83% 44.69%

GTC-P 15.74 17.53% 16.36 8.90% 3.92% 3.74%

Fig. 8: Results for MILC using full and half risers.

the increase in bandwidth IB , and the efficiency factor η for
each application. Note that IS = IBSTREAM = 104.79%.

Fig. 9: Curve η×F for experimental results. A miniature of the η×F curve
for the experimental results from Radulovic et al. was added too.

Plotting the η × F curve for these values leads to the
graph presented in Figure 9. This figure also includes a
miniature of the η×F curve for the experimental results from
Radulovic et al. The results demonstrate a similar pattern of
decreasing efficiency of transforming bandwidth increase into
application performance depending on the amount of memory
bandwidth the application originally uses. In these experiments
the sustained bandwidth was doubled, but GTC-P effective
bandwidth utilization did not double – it actually increased
by only 4%. Even MILC, with an initial bandwidth utilization
of 80%, observed an increase of 64% in effective bandwidth.
Based on these numbers, increasing the available bandwidth
even by a substantial amount is not enough by itself to improve
application performance. As mentioned by Radulovic et al. [5],
even when increasing bandwidth mitigates memory collisions
other components can still limit performance.

Moreover, comparing to the curve plotted using the ex-
perimental results from Radulovic et al., a similar behavior



is observed, but not the exact same curve with the same
F → η correlation. Both curves present two main linear
regions separated by a steep slope – for Radulovic et al. around
F = 60%, and for the results of this paper around F = 80%.
This suggests that the curve parameters might depend on sev-
eral factors, such as machine architecture, hardware, memory
hierarchy, underlying software, etc. Consequently, to define an
accurate and adequate methodology for performance predic-
tion, especially for memory bound regions of applications, it
is important to execute these applications and benchmarks in
a modern machine with a configuration similar to the target
system. Then, based on these experimental results, the η × F
curve can be traced in order to provide a baseline to predict
performance for the memory bound regions of applications.

VII. CONCLUSION AND FUTURE WORK

This paper presented an investigation on the effects of
memory bandwidth on application performance, more specif-
ically on scientific benchmarks. At first the paper provided
an analysis of background concepts and related work to
formulate a performance model for memory bound regions
of applications. This model is based on two main observa-
tions: (i) Memory bound applications benefit more from an
improvement to total available bandwidth than applications
that are not memory bound; and (ii) The performance gains
of improving available memory bandwidth gradually diminish
as this bandwidth increases, which is graphically represented
by the dislocation to the left (lower fraction F and lower
efficiency η) on the η × F curve.

The model culminated in the definition of a iterative method
to calculate the performance gain (measured in the form of
effective bandwidth used by the application) using variables
such as the initial bandwidth, the sustained bandwidth, and the
parameters of the η×F curve. The model and its foundations
were then tested via experiments conducted on newer hardware
and software. The results exhibited a similar behavior to the
one observed in the curve plotted using experimental results
from the related work from Radulovic et al. [5]. On the
other hand, the disparities between the curves suggest that the
behavior might depend on several factors, such as hardware
and software properties, and even application configurations.
Consequently, an accurate prediction model for memory bound
regions requires extensive experimentation to determine the
best η × F curve to be used. Moreover, improving applica-
tion performance requires a balanced system able to explore
potential enhancements to the memory subsystem. Future
work includes execution of further experiments with different
applications and different hardware setups. Experiments will
cover different application configurations, problem sizes, and
parallelism options (e.g., threading [22], [23]).

Acknowledgment: We thank David Montoya and Gary
Grider for the feedback during the creation of the performance
model and the execution of the experiments. We also thank
Karen Bard and Dave Singer for the support during the
configuration of the Firestone cluster.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[2] Z. Guz et al., “Threads vs. caches: Modeling the behavior of parallel
workloads,” in 2010 IEEE International Conference on Computer De-
sign, Oct 2010, pp. 274–281.

[3] B. L. Jacob, The Memory System: You Can’t Avoid It, You Can’t
Ignore It, You Can’t Fake It, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2009. [Online].
Available: http://dx.doi.org/10.2200/S00201ED1V01Y200907CAC007

[4] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall:
Implications of the Obvious,” SIGARCH Comput. Archit. News,
vol. 23, no. 1, pp. 20–24, mar 1995. [Online]. Available: http:
//doi.acm.org/10.1145/216585.216588

[5] M. Radulovic et al., “Another Trip to the Wall: How Much
Will Stacked DRAM Benefit HPC?” in Proceedings of the 2015
International Symposium on Memory Systems, ser. MEMSYS ’15.
New York, NY, USA: ACM, 2015, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/2818950.2818955

[6] J. Ousterhout, “Why aren’t operating systems getting faster as fast as
hardware,” in In Summer USENIX90. Citeseer, 1990.

[7] R. Sites, “It’s the memory, stupid!” Microprocessor Report, vol. 10,
no. 10, pp. 2–3, 1996.

[8] B. Jacob et al., Memory Systems: Cache, DRAM, Disk. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[9] D. Patterson et al., “A case for intelligent RAM: IRAM,” IEEE Micro,
April, 1997.

[10] S. Srinivasan, “Prefetching vs The Memory System: Optimizations
for Multi-Core Server Platforms,” Ph.D. dissertation, University of
Maryland, 2007.

[11] A. Hutcheson and V. Natoli, “Memory Bound vs. Compute Bound:
A Quantitative Study of Cache and Memory Bandwidth in High
Performance Applications,” Stone Ridge Technology, Tech. Rep., jan
2011. [Online]. Available: http://stoneridgetechnology.com/wp-content/
uploads/2014/12/ComputevsMemory.pdf

[12] R. Crisp, “Direct rambus technology: The new main memory standard,”
IEEE Micro, vol. 17, no. 6, pp. 18–28, 1997.

[13] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification
2.1,” Oct. 2015. [Online]. Available: http://www.hybridmemorycube.
org/specification-v2-download-form

[14] JEDEC, “High Bandwidth Memory (HBM) DRAM,” Nov. 2015.
[Online]. Available: https://www.jedec.org/standards-documents/results/
jesd235

[15] D. A. Patterson, “Latency Lags Bandwith,” Commun. ACM, vol. 47,
no. 10, pp. 71–75, Oct. 2004. [Online]. Available: http://doi.acm.org/
10.1145/1022594.1022596

[16] Y. Chou et al., “Microarchitecture Optimizations for Exploiting
Memory-Level Parallelism,” SIGARCH Comput. Archit. News, vol. 32,
no. 2, pp. 76–, Mar. 2004. [Online]. Available: http://doi.acm.org/10.
1145/1028176.1006708

[17] A. Caldeira et al., “IBM Power Systems S822LC – Technical
Overview and Introduction,” IBM, Tech. Rep., December
2015. [Online]. Available: http://www.redbooks.ibm.com/Redbooks.
nsf/RedbookAbstracts/redp5283.html

[18] J. D. McCalpin, “Sustainable Memory Bandwidth in Current
High Performance Computers,” Silicon Graphics, Inc., Tech. Rep.,
Oct. 1995. [Online]. Available: http://www.cs.virginia.edu/∼mccalpin/
papers/bandwidth/bandwidth.html

[19] NERSC, “GTC-P.” [Online]. Available: http://www.nersc.gov/
research-and-development/apex/apex-benchmarks/gtc-p/

[20] ——, “HPCG.” [Online]. Available: http://www.nersc.gov/
research-and-development/apex/apex-benchmarks/hpcg/

[21] ——, “MILC.” [Online]. Available: http://www.nersc.gov/
research-and-development/apex/apex-benchmarks/milc/

[22] W. Wang et al., “Predicting the memory bandwidth and optimal core al-
locations for multi-threaded applications on large-scale numa machines,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), March 2016, pp. 419–431.

[23] ——, “Dramon: Predicting memory bandwidth usage of multi-threaded
programs with high accuracy and low overhead,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2014, pp. 380–391.


