
Using externals IdPs on OpenStack: A security
analysis of OpenID Connect, Facebook Connect,

and OpenStack authentication
Glauber C. Batista, Maurı́cio A. Pillon, Guilherme P. Koslovski, Charles C. Miers

Graduate Program in Applied Computing – Santa Catarina State University – Joinville – Brazil
glauber@colmeia.udesc.br, {mauricio.pillon, guilherme.koslovski, charles.miers}@udesc.br

Nelson Mimura Gonzalez
IBM Watson Research Center, Yorktown Heights, NY, USA

nmimura@us.ibm.com

Marcos A. Simplicio Jr.
University of São Paulo, São Paulo, SP, Brazil

mjunior@larc.usp.br

Abstract—The installation and configuration of cloud environ-
ments has increasingly become automated and therefore simple.
For instance, solutions such as RedHat RDO and Mirantis Fuel
facilitate the deployment of popular computational clouds like
OpenStack. Despite the advances in usability, effort is still re-
quired to create and manage multiple users. This is of particular
relevance when dealing with sensitive information, a somewhat
common case for private clouds. To alleviate this burden, many
clouds have adopted federated Single Sign-On (SSO) mechanisms
for authenticating their users in a more transparent manner. In
this work we analyze the practical security of an OpenStack
IaaS cloud when combined with either OpenID Connect (using
Google as IdP) or Facebook Connect (using Facebook as IdP).
The criteria used in the analysis comprise the ability to provide
data encryption, the risks involved in the use of an external
IdP, and improper access control. We identify potential issues
regarding these solutions and we propose approaches to fix them.

Index Terms—OpenID Connect, Facebook Connect, Open-
Stack, Keystone

I. INTRODUCTION
Cloud computing is a model that allows for ubiquitous,

convenient, and on-demand access to a set of configurable
resources that can be quickly provisioned and released with
minimal effort [1]. OpenStack [2] is currently considered one
of the most prominent open source cloud platforms [3], [4].
This prestige is reflected by the activeness of its community of
developers and by its worldwide utilization for building large
(including federated) cloud environments [2].

Since cloud environments can become quite complex, cloud
solutions usually provide automated tools to facilitate their
management. One of these tools, which is of particular interest
in this work, refers to Single Sign-On (SSO) mechanisms
[5], [6]. SSO solutions provide a unique identifier to each
user, so they can authenticate themselves to any service using
this identifier and a single set of credentials registered on
an Identity Provider (IdP) [7]. This approach creates a user-
centric authentication environment, so even when different
services require strong authentication: (1) users do not need
to create and manage multiple credentials for each service;
and (2) the services themselves are not required to securely

store and manage the users’ credentials, offloading most of the
authentication-related tasks to the SSO system.

With the growing interest of incorporating SSO into cloud
environments, some organizations started to adapt their own
existing identity systems to use them as SSO solutions in their
own domains. However, federated authentication protocols
such as OpenID Connect and Facebook Connect quickly be-
came prefered approaches, since they provide further support
for service integration. This led to the creation of cloud
environments that support a more dynamic authentication and
authorization process, easier to integrate with internal or exter-
nal services. Nevertheless, the convenience brought by these
tools is counterbalanced by potential security risks, which
need to be well understood to prevent abuse by malicious
entities accessing the cloud. To address the need of correctly
integrating of SSO mechanisms into the cloud, this work
analyzes the practical security of an OpenStack IaaS cloud
when combined with popular SSO solutions, namely OpenID
Connect (using Google as IdP) and Facebook Connect (using
Facebook as IdP). More precisely, we use OpenStack’s module
responsible for identity management, named Keystone, which
provides an OpenID Connect plugin and supports third party
IdPs. We also develop a proxy for Facebook Connect on
OpenStack’s Horizon module, since this SSO mechanism is
not natively supported. Building upon the analysis provided in
[8], the selected criteria for evaluating both solutions comprise
the ability to provide data encryption, the risks involved in the
use of an external IdP, and improper access control.

The rest of this document is organized as follows. Sec. II
briefly discusses the OpenStack architecture and components,
identifying modules related to authentication (in particular,
Keystone). OpenID Connect is then described in Sec. III,
whereas Facebook Connect design is explained in Sec. IV.
Sec. V discusses related works. After Sec. VI defines the
criteria employed in our security evaluation and Sec. VII
describes the corresponding testbed environment, the results
obtained are analyzed in Sec. VIII.



II. OPENSTACK AND KEYSTONE

OpenStack is a cloud solution that controls several com-
putational resources in a data center [2], [9]. OpenStack is
composed by services, each one responsible for a specific
set of roles, such as handling storage, networking, com-
puting, databases, telemetry, and orchestration. Keystone is
the module responsible for identity management as well as
authentication and authorization of operations related to all
OpenStack services. Keystone employs a Role-Based Access
Control (RBAC) model for providing high-level authoriza-
tion which transforms attributes into roles. The authorization
itself occurs in a decentralized manner based on projects
and roles of each user [6]. Keystone is extensible, allowing
SSO authentication by means of the OS-FEDERATION ex-
tension. When running Keystone on an Apache HTTP Server,
which allows the installation of plugins and modules, the
OS-FEDERATION extension can be implemented in different
manners. In particular, when using an OpenID Connect IdP,
the mod_auth_openidc module handles the authentication
process [10]. OpenID Connect uses claims between the com-
munication parts. These claims require and provide attributes
from registered users, and take the form of encrypted and
signed JSON documents [6], [10]. Mapping rules convert
remote user attributes into local attributes obtained through
claims. More precisely, the mapping specifies which users can
have access to a given service as well as which group and
project they should be allocated to.

III. OPENID CONNECT
OpenID was created as an open source authentication

mechanism for providing user-centric identity management
in a decentralized manner, and is the basis for many SSO
authentication solutions [9], [11], [12]. OpenID Connect is
the 3rd generation of OpenID, operating on top of OAuth 2
authorization protocol and using REST/JSON direct messages
protected by a Transport Layer Security (TLS) tunnel [13].
OAuth 2 is beneficial for this purpose as it provides a generic
framework in which a user U can delegate to a service S1 the
right to access (part of) U ’s resources managed by a second
service S2. This process does not require U to share any
credentials with S1, so U has complete control over the data
being shared and for how long [12], [14]. OpenID Connect
creates an SSO system by providing an identity layer upon
OAuth 2, therefore the delegation process involves accessing
the user’s identifiable attributes. This integration is more
secure than the disjoint use of these protocols, making OpenID
Connect less susceptible to phishing, Cross-Site Scripting
(XSS) and Cross-Site Request Forgery (CSRF) attacks [11].
Besides usability, security is one of the main reasons why large
organizations (e.g., Facebook and Google) use OAuth and
related technologies to enable their users access to contracted
services [14], [15].

An example scenario is useful to explain how users interact
with OpenID Connect. A user U wants to access service
example.com offered by a Service Provider (SP). The
service is accessed via his/her User-Agent (UA) (e.g., a web
browser). Instead of filling a signup form, U provides an

identifier (e.g., a URL) that represents his/her identity. The SP
then starts the discovery process to verify U ’s ownership of the
identifier. First, the SP identifies that U can be authenticated
via the IdP openid.idp.com with username user. Then,
U is redirected to that IdP and provides the proper credentials
(e.g., a username and corresponding password). U also autho-
rizes the IdP to access (part of) his/her personal information.
Finally, the IdP redirects U to the SP, which in turn provisions
a new account to that user. To illustrate this process in the
context of OpenStack, Figure 1 shows its execution when the
SP is the Keystone module. At the end of the authentication
process in OpenStack, the user receives a token with a defined
scope, specifying the domain, groups, and projects to which
he/she belongs. This token is used in every subsequent request
sent by the user to OpenStack’s services.

Figure 1. OpenID authentication flow in OpenStack.

IV. FACEBOOK CONNECT

Facebook Connect is an authentication platform based on
a RESTful Application Programming Interfaces (APIs) that
allows applications to access Facebook services via GET or
POST requests [16], [17]. The integration between applica-
tions and Facebook is done using Javascript SDK or direct
requests, both implemented by the developer. One of the most
important APIs is the Open Graph (http://ogp.me/), which
allows applications to access user objects (e.g., photos, friends,
groups), and the connections among them in the Facebook
social network [15]. Similar to OpenID Connect, Facebook
Connect is based upon OAuth 2, so users can control which
data are accessible by applications. Although relatively easy to
implement, Facebook Connect is not an open protocol and its
detailed operation is not officially available. For this reason, in
this study we developed a proxy, named Openstack-Facebook
(OFL), that allows the integration of Facebook Connect with
OpenStack. Since OFL acts as an authentication proxy for
Horizon, Keystone is not directly involved in the authentication
flow with Facebook IdP. Keystone is only necessary at the
end of authentication process, when it creates or authenticates
the user. After this, the user receives a scoped token which
authorizes him/her to access the corresponding resources.
The message flow among UA, OpenStack and Facebook is
presented on Figure 2.



Figure 2. Facebook Connect authentication.

Figure 2 shows the authentication process launched when
the user access the cloud’s dashboard (1). The server responds
with an HTML page in which Facebook is presented as
authentication option (2). By selecting this option, the user
is redirected to Facebook’s authentication page (3). Once
authenticated, the user receives an authorization code and is
redirected to OpenStack again (4). After this code is provided
to OpenStack by the UA (5), OpenStack queries Facebook
(6) to obtain an access_token from the code parameter.
The access_token allows OpenStack to obtain (8,9) the
user’s unique identifier, which can be used in the creation of a
new account (sign-up) or in the authentication of an existing
account (sign-in). The authentication via OFL comprises an
extra step to identify the user as a member of a specific group.
For this purpose, OpenStack obtains the list of group members
(10,11) and verifies the user’s identifier against this list. If
the user belongs to the group, the authentication process is
successful and he/she is redirected to the corresponding project
(12,13,14).

V. RELATED WORK
SSO authentication has been much debated in the last years,

leading to the emergence of many solutions aiming to create
a user-centric environment [18]. Among them, OpenID 2.0
and OAuth 2 became the most prevalent protocols for authen-
tication and authorization, respectively [19]. This success is
probably due to the fact that security and privacy concerns
have always been important aspects in the evolution of these
protocols. As an example, one recommendation highlighted in
OAuth 2 specification [20] is that the authorization endpoint
must be protected by TLS. Otherwise, authorization codes
could be intercepted, making the endpoint vulnerable to attacks
such as session swap: suppose an attacker builds a page
that contains a request with intercepted tokens; when the
victim accesses the page, its UA automatically sends a GET
or a POST request to the SP, but the session is bound to
the attacker’s account. The system’s security against attacks
involving captured tokens also depends on the type of tokens
employed. Namely, bearer tokens allow anyone who holds
the token to access the protected resources. In comparison,
Message Authentication Code (MAC) tokens require the user
to demonstrate knowledge of a cryptographic key, so they are
more secure against capture [21], [22].

The broad utilization of OAuth and OpenID motivated many
studies that evaluate security aspects related to their design and

implementation [8], [21], [23], [24]. Even though these studies
are relevant to understand the security of SSO mechanisms
based on these protocols, OpenID Connect actually addresses
many of the vulnerabilities identified in OpenID 2.0 and
OAuth 2 [11]. Hence, it is important to consider the security
best practices identified in these studies and understand how
they apply to the environment in which they are implemented.
To the best of our knowledge, this is the first work that
does so (for OpenID and Facebook Connect) in the specific
environment of OpenStack-based clouds.

An interesting analysis focused specifically on OpenID and
Facebook Connect, albeit not in the context of clouds, is
presented in [7]. The main issue thereby identified resides in
the single authentication option with Facebook, which allows
the IdP to track all websites visited by the user. The authors
propose a solution based on the possibility of choosing other
IdPs, but recognize that the trend of Internet services is to use a
limited set of IdPs (e.g., Facebook or Google). Unfortunately,
however, an in-depth analysis could not be performed in [7],
since: (1) there is not much publicly available information
about the protocol’s authentication flow; and (2) the captured
data actually differs from the authentication flow specified by
Facebook, which is likely due to internal, unreported changes
in the protocol.

VI. ANALYSIS CRITERIA
The adoption of well-defined good practices is crucial for

the successful deployment of SSO mechanisms in computa-
tional clouds. One important aspect to note is whether the solu-
tion uses TLS for data channel encryption, as recommended in
the specification of OAuth 2. This issue applies both to Open-
Stack’s OpenID Connect plugin and to Facebook Connect’s
implementation. Another task refers to the privacy implications
of using an external IdP in an OpenStack environment. After
all, as pointed out by [7], [23], IdPs can store information
about the user and, eventually, track their interactions with
the cloud. Therefore, it is useful to review the privacy policy
of Google and Facebook, used as IdPs in this work. It is
also necessary to verify the possibility of user impersonation,
since CSRF attacks and interception of packets can become
an issue in this scenario [21], [24]. Finally, one potential issue
particular to OpenID Connect is that data pertaining to an
old user can be accessed by new users who assume the same
OpenID identifier. This can be avoided if OpenID identifiers
are not reused in the system, a recommendation followed by
Google [25]. However, it is necessary to verify how the SP (in
our case, OpenStack) handles the situation in which different
users present the same OpenID identifier, i.e., whether or not
the end up accessing the same account.

VII. TESTS ENVIRONMENT
The testbed employed in the experiments comprises three

servers: a controller node, a network node, and a comput-
ing node, running RDO OpenStack Liberty on GNU/Linux
CentOS 7. The SSO environment authentication uses Google
and Facebook IdPs to authenticate users. The cloud controller
node has two network interfaces: one for external access and
one for management. The network node has three interfaces:



one with Internet access for the virtual machines (VMs),
one for management, and one for internal traffic of the
VMs. The compute node has two network interfaces: one
for management and one for internal traffic to VMs. The
addresses for the management and internal traffic networks are
10.0.0.0/24 and 172.16.10.0/24, respectively. The
controller responds by the fictitious Fully Qualified Domain
Name (FQDN) www.cloud.com. Keystone is located on
the controller node and all services are authenticated by
the http://10.0.0.1:5000 address. The internal and
administrative requests of the API are performed via the man-
agement network. Public API requests are performed via the
external network, which is connected to one of the controller
interfaces. To enable OpenID Connect in Keystone, the plugin
mod_auth_openidc has to be installed and Keystone
Apache file has to be configured to accept SSO authenti-
cation from the IdP. Since Google is used as IdP, it is
necessary to create the application’s OAuth 2 credentials
in the Google Developers Console. It is also necessary to
configure Keystone to enable OpenID Connect plugin, as well
as configure Horizon to display the SSO authentication option
on the home page. It is necessary to create a reference to
the IdP, so it can be used in the authentication process, and
configure the corresponding mapping rules. In the case of
Facebook Connect, it is necessary to install the OFL tool and
configure Horizon to enable authentication through the new
proxy. Similar to the Google setup, the application’s OAuth
2 credentials in the Facebook Developers panel must also
be created. Finally, an auxiliary database is created to store
additional user information provided by Facebook.

Traffic analysis was performed based on data collected by
tcpdump, listening on the controller’s external network inter-
face (TCP/80, TCP/443, and TCP/5000). The traffic analysis
experiments were repeated ten times to ensure that the flow
of requests follows the same pattern, as well as to verify the
nature of the data exchanged among the involved parties.

VIII. SECURITY ANALYSIS
In what follows, we discuss the results obtained when

considering the criteria defined in Sec. VI.

A. Data Encryption

As previously mentioned, OpenID Connect and Facebook
Connect are built upon the OAuth 2 protocol and use commu-
nication channels protected by TLS [7], [21], [26]. In addition,
both protocols use short-term tokens when providing access
to resources. This reduces the risk of data exposure and user
impersonation in case those tokens are somehow intercepted
by attackers (e.g., via a man-in-the-middle attack) [27]. To
confirm the veracity of this protection, the testbed was config-
ured so that the packets exchanged during the authentication
process could be captured and analyzed.

1) Communication between UA and OpenStack: As men-
tioned in Sec. II, Keystone is the identity management com-
ponent of OpenStack. By default, the Keystone module has an
endpoint listening for requests on TCP/5000 port. For OpenID
Connect, Keystone is responsible for exchanging messages

with the IdP and the SP. In the case of Facebook Connect
with OFL, Horizon is responsible for the initial authentication
step, but it transfers the process to Keystone for the user
account’s creation or authentication. Hence, even though the
message flow for each IdP is different, the packet capture
can be performed on the same ports. Namely, tcpdump was
configured to capture the packets exchanged by the UA and
the SP on ports TCP/80 and TCP/5000, when TLS is disabled
in OpenStack, and ports TCP/443 and TCP/5000, when TLS
is enabled. The captured packets are then compared to verify
whether or not TLS is protecting the connections.

a) OpenID Connect: Figure 3 exemplifies the commu-
nication sequence between UA and OpenStack during the
authentication process. The captured messages show the data
of each request in the diagram.

Figure 3. Communication between UA and SP.
(1) User, via UA, requests the dashboard to authenticate to
OpenStack; (2) User selects OpenID Connect to authenticate;
(3) OpenStack redirects the UA to Google’s IdP; (4) User
authenticates with Google, which returns id_token and
access_token; (5) id_token and the access_token
are redirected to OpenStack; (6) Through the id_token,
which is a JSON Web Token (JWT), OpenStack obtains
the necessary claims to authenticate the user, such as iss,
email and name. The access_token is used if there
is a need to get other user’s claims through API calls (e.g.,
verify if the user belongs to a particular group); and (7) After
authentication and user mapping, UA redirects the user to the
dashboard of his/her project.

Collecting information without TLS confirms that the data is
sent with no protection. Consequently, an eavesdropper can ob-
tain the information required to impersonate users. Even with-
out TLS, though, Keystone uses a token called csrftoken,
which prevents CSRF attacks. Google also requires this token
prior to the authentication request in order to protect the user’s
account against CSRF attacks. The experiment with TLS, on
the other hand, revealed that the achieved security level is
insufficient. Although Horizon uses TLS to protect its traffic,
Keystone does not. As a consequence, all traffic going through
port TCP/5000 is unprotected and can be captured by an
attacker, including the id_token. Therefore, to ensure that
the relevant endpoints communicate securely, TLS has to be
explicitly enable on Keystone as well.

b) Facebook Connect: The message flow between UA
and OpenStack during the authentication process is illustrated
by Figure 4.



Figure 4. Data flow between UA and OpenStack.

(1) User, via UA, accesses OpenStack’s dashboard; (2) User
selects Facebook Connect to authenticate to the cloud; (3)
OpenStack redirects the UA to Facebook’s IdP; (4) User
authenticates him/herself in Facebook, which returns a code
token; (5) The code token is redirected to OpenStack; (6)
OpenStack uses code to obtain the user’s facebook_id
and access_token. At this stage, OpenStack uses the
access_token the user to request the user’s e-mail to
Facebook, necessary for the account creation; and (7) After
the user is authenticated or have a new account created, the
UA is redirected to the corresponding project.

In the experiment without TLS, the entities exchange
unprotected data that can be intercepted for malicious
purposes, especially the code parameter. However, ac-
cording to Facebook(https://developers.facebook.com/docs/
facebook-login/manually-build-a-login-flow), the code token
is unique and generated for each authentication request. There-
fore, even if intercepted, the code cannot be reused for other
operations. The experiment also revealed the utilization of the
CSRF token, as well as the protection of the communication
channel via TLS. However, unlike OpenID Connect, the con-
figuration of TLS in OpenStack Horizon is sufficient to prevent
data capture from IdP. Thus, even if the attacker captures the
user’s code, it cannot be used in new authentication towards
the service.

2) Communication between UA and IdP:
a) OpenID Connect: When using a particular service

offered by an SP, the user account must be authenticated
and the SP must be authorized to access a user’s data. The
authentication and authorization flow is composed by the steps
presented in Figure 5.

Figure 5. Communication between UA and Google.

OAuth 2 is responsible for requesting user permission before
authorizing the application to access the requested information.
This is typically accomplished by presenting a consent screen
to the user, which lists the information the application wants
to access. (1) OpenStack initiates the authentication process;
(2) Google shows its usual login page; (3) User provides
his/her credentials; (4) Google requests user to authorize the
application via a consent screen, listing which data will be
accessible by OpenStack; (5) User authorizes OpenStack to
access his/her information; and (6) Google returns id_token
and access_token to UA, which relays the tokens to
OpenStack.

The user must agree to Google’s terms of service and
privacy during the authorization process. This allows Google
to collect information about the accessed services, leading
to privacy concerns. Another potential issue, identified in
[24], is that CSRF attacks can be performed due to Google’s
“automatic granting” policy. Even though this vulnerability
has already been addressed by Google itself, the implication
is that OpenStack should verify every other IdP regarding this
issue.

b) Facebook Connect: To authenticate to applications us-
ing Facebook, the user must authorize the application to access
his/her Facebook information via OAuth 2. The authentication
process may request additional information via specific APIs.
This authentication process, which involves UA and IdP, is
illustrated in Figure 6.

Figure 6. Messages between UA and Facebook.
(1) OpenStack initiates the authentication process; (2) Face-
book requests the user to authenticate; (3) User provides the
necessary credentials; (4) Facebook displays the application
authorization page, informing the data being requested by the
application; (5) User authorizes the application to access the
requested data; and (6) Facebook returns code to UA, which
is forwarded to OpenStack.

Similarly to Google’s authentication and authorization pro-
cess, the user must agree to Facebook’s terms of service and
privacy policy. This can also lead to privacy issues, allowing
the IdP to track the user’s activities. Moreover, Facebook is the
only IDP in Facebook Connect, therefore it is not possible to
a less invasive option for this particular authentication model.

3) Communication between OpenStack and IdP: In the
communication channels between UA / SP and UA / IdP,
the operation of OpenID Connect and Facebook Connect
protocols is similar. However, the message flow is different
in the communication between SP / IdP, particularly on how
the users’ data are obtained from the IdP.



a) OpenID Connect: The communication between Open-
Stack and Google IdP occurs by redirecting requests through
the UA. Even though OpenID Connect’s configuration re-
quires a Uniform Resource Locator (URL) for the discovery
process, OpenStack only accesses the document to obtain
the information needed to authenticate the user in IdP (e.g.,
endpoints, and supported scopes). Thus, there is no direct
traffic between OpenStack and Google’s IdP during the au-
thentication process. Data capture experiments revealed that no
packet was exchanged directly between Keystone and the IdP,
which reinforces this statement. Figure 7 lists the messages
exchanged between OpenStack and Google IdP.

Figure 7. Flow between OpenStack and Google IdP.

For simplicity, UA is not shown in Figure 7. All messages
exchanged between OpenStack and Google IdP go through
UA according to the following steps: (1) OpenStack sends a
token CSRF and the authentication request to Google’s IdP;
(2) The IdP responds the authentication request by passing
the state parameter and the code parameter; (3) Token
state is compared to the session’s token and validated; (4)
OpenStack uses the code and client information created in
the Google Developers Console to request id_token and
access_token; and (5) The IdP returns id_token and
access_token to OpenStack.

It is possible to request additional user information via
APIs, and use them for mapping. In this case, after OpenStack
obtains the access_token, a message is sent to the IdP
for accessing to the desired API and corresponding data.
The id_token must be validated by the IdP to prevent
replay attacks. Verification includes five steps that are done
locally [25], so it is not possible to capture any data by
eavesdropping the communication.

b) Facebook Connect: For OpenID Connect the scope
of operations is defined within the API and under user
authorization. For Facebook Connect, it is important to pre-
vent applications from improperly accessing and using data.
Applications that require access to specific APIs must be
submitted for expert review, which verifies that the information
requested is being used according to Facebook’s terms of use.
Hence, unlike OpenID Connect, Facebook Connect does not
return basic user data by default – it is necessary to request
this information via API calls. Also unlike Google/OpenID
Connect, OpenStack communicates directly to Facebook. The
authentication process is illustrated in Figure 8, which shows
that not all messages are redirected through UA (similarly to
OpenID Connect).

Figure 8. Flow between OpenStack and Facebook.
(1) OpenStack sends a CSRF token and the authentication
request to Facebook via UA; (2) Facebook sends code and
the state parameter; (3) The state is validated along with
the session’s CSRF token; (4) OpenStack uses code and the
application credentials to get the user access_token; (5)
Facebook returns the user’s access_token; (6) OpenStack
makes a new request, sending the access_token and
requesting the user’s name, e-mail and facebook_id; and
(7) Facebook returns the requested information to OpenStack.

User information (e.g., identifier) is not redirected through
UA in Facebook Connect. Thus, Facebook provides an en-
crypted channel directly with the application, protecting the
authentication packets.

4) Source Code Analysis: As an additional verification, we
analyzed Keystone’s source code, for OpenID Connect, and
OFL’s source code, for Facebook Connect.

a) OpenID Connect: Our analysis of the traffic between
Keystone and Google’s IdP revealed that no messages are
exchanged to validate the id_token obtained. Therefore,
this validation could only occur locally in Keystone. However,
based on our analysis of the source code, Keystone does
not perform any sort of validation of the token as specified
by Google. More precisely, the existing functions only use
the token or the access_token to obtain further user
information via introspection. Hence, by intercepting the user’s
id_token, it is possible to generate an authentication request
and consequently access the user’s OpenStack projects. This
vulnerability can be fixed in two ways: (1) Adoption of TLS by
Keystone, thus protecting the data sent through the network;
this requires the manual activation of TLS when configuring
OpenStack, since this is not the default configuration. This
approach does not fully solve past problems, though, since
tokens that have been previously stolen can still be used by
attackers. (2) Validate id_token, as specified in Google’s
documentation, which implies a modification in Keystone’s
source code in future releases.

Google specifies that the id_token is not always required
if the service is able to ensure that the id_token comes
from Google. This could be accomplished with some changes
in the authentication flow, so the IdP’s response takes the
form of a code instead of an id_token. Precisely, in the
current process, the code is received and used in exchange
for the id_token, but this process goes through the UA,
being susceptible to interception. With this modification, Key-
stone would query the IdP directly to get all required user
information over a secure channel, instead of relying on the
UA.



b) Facebook Connect: Unlike OpenID Connect, Face-
book Connect obtains the user data directly, so there is no need
to implement a separate process to validate facebook_id.
However, the OFL tool stores some information from Face-
book, such as facebook_id and the password gener-
ated during the Keystone account creation process. Storing
facebook_id is necessary to identify whether the user’s
account already exists or needs to be created. The password,
in turn, needs to be stored in an auxiliary table to allow users
to authenticate to Keystone. However, storing the password
without any protection may compromise users’ information if
the database is breached. Therefore, an authentication proxy
implemented on Horizon is not sufficient for the correct
authentication using Facebook Connect. A similar solution is
adopted for user authentication in the OpenStack test cloud,
TryStack (http://trystack.org/). Thus, the ideal option is to
create a plugin for Keystone to manage the authentication
without passwords, similar to the OpenID Connect plugin.
B. Using an External IdP

The adoption of an external IdP may be motivate by
many reasons. For instance, securely implementing a local
IdP may be a complex task, so it is reasonable to consider
using existing solutions. The lower implementation cost may,
however, result in an additional maintenance costs, as observed
by [28] when using social networking authentication to allow
users to access cloud resources. Nevertheless, an external IdP
makes it easier to integrate the cloud with external services
that rely on the same SSO mechanisms. In this study, Google
and Facebook were selected because they currently are the
most widely adopted IdPs [7], [25]. Using an IdP account
for authentication implies following the stated privacy and
security policies of that IdP. Hence, when using the Google
account to authenticate to a third party service, the user
agrees that Google can collect usage data such as [29]: (1)
Information user transmits: Necessary information to create
an account, such as first name, last name, and credit card (for
purchases). (2) Information collected from service usage: This
information includes application information used in account
access, IP address, usage / advertisement information, location
information, storage, cookies, applications, and more. When
using a Facebook account to authenticate to a service, the user
allows Facebook to access the following data: (1) Information
of the user and his/her contacts; (2) Device information; (3)
Shopping information inside Facebook; (4) Business partner
information; and (5) Information from applications using Face-
book services. It is possible to note on both privacy policies
that Google and Facebook store information about the use of
their services. However, using the authentication mechanism
allows Google and Facebook to monitor user activities (e.g.,
partners, URI), which may impact the user’s privacy [27].
Also, when using an external IdP, the user is susceptible to
the vulnerabilities of the chosen IdP implementation. As noted
in [24], the implementation of Google IdP has some features
that can be exploited by attackers. Therefore, it is important to
strictly follow the application’s configuration guide, provided
by the IdP, to avoid security and privacy issues.

C. Improper administrative access in OpenStack
Improper access to other projects may only occur with

the use of OpenID Connect. In case of incorrectly config-
ured mapping rules, the SSO solution may authorize user
access to projects to which the user does not belong. On the
other hand, OFL is implemented in a way that it does not
use mapping rules. It operates in a way that is similar to
users that authenticate via username and password. OpenID
Connect authentication method should ensure that the user
has access only to correct projects and that the user is not
able to obtain administrative privileges in OpenStack. As
mentioned in Sec. II, mapping rules are required to convert
remote attributes into local ones and ensure user access to the
designated project [10]. In order to ensure that only specific
users have administrative access, it is necessary to specify
criteria for the correct mapping. For instance, when Alice and
Bob, with their respective e-mails alice@example.com
and bob@example.com, are included in the administrators
group, they acquire privileged access to OpenStack. Any
attribute obtained through an OpenID claim can be used in
the mapping filters, and regular expressions can also be used
for mapping rules [10], [30]. To ensure users can only access
their own projects, a remote attribute (e.g., e-mail) should be
used to verify the existence of a project assigned to a given
user or the creation of a new project. Therefore, user access
is easily controlled via mapping rules.

D. Summary of the Analisys
Table I consolidates the results of the analysis hereby

presented, listing the issues with each protocol and possible
solutions for them. In this table, the risk level column is
evaluated in a 1-5 scale, so it can be low, low-medium,
medium, medium-high, or high. This indicates both the prior-
ity in which the listed solutions should be adopted and the
severity of potential exploits when this is not done. Only
the use of an external IdP was evaluated below medium,
meaning that using OpenID Connect for SSO authentication
in OpenStack is considered safe, but the selection of an IdP
must be performed cautiously. Facebook Connect did not have
as many vulnerabilities as OpenID Connect, only presenting
problems with user privacy (the protocol implements, by
default, several measures that minimize the compromise of
user information). Also, OpenID Connect security integration
with OpenStack is, overall, evaluated as medium-high. The
main potential issue in this case is the use of an external
IdP, which means that OpenStack’s users become subject
to an external privacy policy. Assuming that no correction
is applied, Facebook Connect provides better security than
OpenID connect in OpenStack. However, the proposed fixes
are quite easy to implement, so they can be considered tied in
terms of suitability.

IX. CONSIDERATIONS & FUTURE WORK

The analysis performed in this paper corroborates the per-
ception that computational clouds inherit the security issues
of technologies upon which they are built, but add new con-
cerns when they are integrated and orchestrated in the cloud



Table I
SUMMARY OF SECURITY ANALYSIS OPENID AND FACEBOOK CONNECT ON OPENSTACK

Criterion Vulnerability Affected Protocols Possible Solutions Good Practices Risk level
OpenID Con-
nect

Facebook
Connect

Data Encryption Man-in-the-
middle

Yes No Encrypted Channel id_token validation Medium-High

Use code instead id_token as
authentication response

Using external IdP Privacy Violations Yes Yes Choose a trustworthy IdP, compati-
ble with internal policy rules

Medium-Low

User impersonation CSRF Yes No Use CSRF token Verify CSRF token in all
IdP sessions

Medium-High

Improper access to
other projects

Recycling
OpenID identifier

Yes No Use mapping rules which include
user and group attributes, besides
OpenID identifier

Generate unique OpenID
identifiers (adopted by
Google)

High

environment. Technologies such as TLS represent an essential
building block that must be used to provide a basic level of
security for services and their users, but they do not represent
a definitive answer. Using external IdPs that outsource part
of the security lifecycle, in particular the authentication and
authorization components, also contributes to this complex
scenario. In addition, privacy and compliance issues related to
the (meta)data generated in the interactions with an external
IdP (e.g., Google, Facebook) are also likely to be a concern.
In the specific case of Google and Facebook, privacy issues
may easily conflict with corporate security policies, so other
external IdPs may be considered in real-world deployments.

As future work, we plan to build an authentication plugin for
Keystone, instead of using a proxy in Horizon, and test the
protocols in newer versions of OpenStack. Finally, we plan
to expand the security analysis hereby presented, covering a
broader range of aspects addressed in security standards and
procedures [31].

Acknowledgments.This research was developed at
LabP2D/UDESC.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.
[2] Openstack, “Openstack – open source software for creating private and

public clouds,” www.openstack.org/, 2017.
[3] S. Bonner, C. Pulley, I. Kureshi, V. Holmes, J. Brennan, and Y. James,

“Using OpenStack to improve student experience in an h.e. environ-
ment,” in SAI 2013, 2013, pp. 888–893.

[4] M. Abid, I. Fihri, H. Mousannif, M. Bakhouya, C. El Amrani,
M. Aissaoui, M. El Ouadghiri, A. Haqiq, A. Hayar, and M. Essaaidi,
“MarUnivCloud: Towards a moroccan inter-university cloud,” in 2nd
World Conference on Complex Systems (WCCS), 2014, pp. 587–593,
dOI:10.1109/ICoCS.2014.7060981.

[5] D. W. Chadwick, K. Siu, C. Lee, Y. Fouillat, and D. Germonville,
“Adding federated identity management to OpenStack,” Journal of Grid
Computing, vol. 12, no. 1, 2013, dOI:10.1007/s10723-013-9283-2.

[6] I. Sette and C. Ferraz, “Integrating cloud platforms to identity federa-
tions,” in 2014 SBRC, 2014, pp. 310–318, dOI:10.1109/SBRC.2014.37.

[7] M. Urueña, A. Muñoz, and D. Larrabeiti, “Analysis of privacy vul-
nerabilities in single sign-on mechanisms for multimedia websites,”
Multimedia Tools and Applications, vol. 68, no. 1, pp. 159–176, jan
2014, dOI:10.1007/s11042-012-1155-4.

[8] G. C. Batista and C. C. Miers, “Security analysis of the OpenID Connect
protocol integration with an OpenStack cloud using an external IdP,” in
2016 XLII CLEI, Oct 2016, pp. 1–12, dOI:10.1109/CLEI.2016.7833358.

[9] R. Khan, J. Ylitalo, and A. Ahmed, “OpenID authentication as a
service in OpenStack,” in 2011 7th IAS, dec 2011, pp. 372–377,
dOI:10.1109/ISIAS.2011.6122782.

[10] S. Martinelli, H. Nash, and B. Topol, Identity, Authentication, and Access
Management in OpenStack: Implementing and Deploying Keystone,
1st ed. O’Reilly Media, Dec. 2015.

[11] M. Cordeiro Domenech, E. Comunello, and M. Silva Wangham, “Iden-
tity management in e-Health: A case study of web of things application
using OpenID connect,” in 2014 IEEE 16th Healthcom, oct 2014, pp.
219–224, dOI:10.1109/HealthCom.2014.7001844.

[12] Z. Obrenović and B. d. Haak, “Integrating User Customization and
Authentication: The Identity Crisis,” IEEE Security Privacy, vol. 10,
no. 5, pp. 82–85, Sep. 2012, dOI:10.1109/MSP.2012.119.

[13] L. Lynch, “Inside the Identity Management Game,” IEEE Internet Com-
puting, vol. 15, no. 5, pp. 78–82, sep 2011, dOI:10.1109/MIC.2011.119.

[14] J. Sendor, Y. Lehmann, G. Serme, and A. Santana de Oliveira, “Platform-
level Support for Authorization in Cloud Services with OAuth 2,” in
2014 IEEE IC2E, mar 2014, pp. 458–465, dOI:10.1109/IC2E.2014.60.

[15] M. N. Ko, G. P. Cheek, M. Shehab, and R. Sandhu, “Social-networks
connect services,” Computer, vol. 43, no. 8, pp. 37–43, 2010.

[16] M. Miculan and C. Urban, “Formal analysis of Facebook Connect single
sign-on authentication protocol,” in SOFSEM, vol. 11, 2011, pp. 22–28.

[17] S. Egelman, “My Profile is My Password, Verify Me!: The Pri-
vacy/Convenience Tradeoff of Facebook Connect,” in Proc. of the
SIGCHI. ACM, 2013, pp. 2369–2378, dOI:10.1145/2470654.2481328.

[18] A. Sharma, “Social Login and Sharing Statistics for Q1 2015,”
apr 2015. [Online]. Available: http://blog.loginradius.com/2015/04/
social-statistics-for-q1-2015/

[19] D. Nolan and D. T. Lang, “Authentication for Web Services via OAuth,”
in XML and Web Technologies for Data Sciences with R, ser. Use R!
Springer New York, 2014, dOI: 10.1007/978-1-4614-7900-0 13.

[20] D. Hardt, “The OAuth 2.0 Authorization Framework,” 2012.
[21] F. Yang and S. Manoharan, “A security analysis of the OAuth pro-

tocol,” in 2013 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), aug 2013, pp. 271–276,
dOI:10.1109/PACRIM.2013.6625487.

[22] D. Hardt, “The OAuth 2.0 Authorization Framework: Bearer Token
Usage,” 2012.

[23] B. v. Delft and M. Oostdijk, “A Security Analysis of OpenID,” in
Policies and Research in Identity Management, ser. IFIP Advances
in Information and Communication Technology. Springer Berlin
Heidelberg, nov 2010, no. 343, dOI: 10.1007/978-3-642-17303-5 6.

[24] W. Li and C. J. Mitchell, “Analysing the security of google’s implemen-
tation of openid connect,” arXiv preprint arXiv:1508.01707, 2015.

[25] Google, “OpenID Connect,” 2017.
[26] OpenID, “OpenID Connect FAQ and Q&As,” 2017.
[27] A. Bhargav-Spantzel, J. Camenisch, T. Gross, and D. Sommer, “User

Centricity: A Taxonomy and Open Issues,” in Proc. of the 2nd ACM
Workshop on Digital Identity Management, ser. DIM ’06. New
York,NY, USA: ACM, 2006, pp. 1–10, dOI:10.1145/1179529.1179531.

[28] D. W. Chadwick, G. L. Inman, K. W. Siu, and M. S. Ferdous,
“Leveraging social networks to gain access to organisational resources,”
in Proc. of the 7th ACM workshop on Digital identity management.
ACM, 2011, pp. 43–52.

[29] Google, “Privacy police – Privacity & Terms – Google,” 2017.
[30] Openstack.org, “Mapping Combinations for Federation,” 2017.
[31] CSA, “Security Guidance for Critical Areas of Focus in Cloud Com-

puting V4.0,” Cloud Security Alliance, Tech. Rep., 2017.


