
Analysis of Virtualized Congestion Control in
Applications based on Hadoop MapReduce?

Vilson Moro[000−0003−3680−06643],
Mauŕıcio Aronne Pillon[0000−0001−7634−6823],

Charles Christian Miers[0000−0002−1976−0478], and
Guilherme Piêgas Koslovski[0000−0003−4936−1619]

Graduate Program in Applied Computing, Santa Catarina State University, Brazil
vilson.moro@edu.udesc.br, {firstname.lastname}@udesc.br

Abstract. Among the existing applications for processing massive vol-
umes of data, the Hadoop MapReduce (HMR) is widely used in clouds,
having above all internal network flows of different volume and period-
icity. In this regard, providers have the challenge of managing data cen-
ters with a wide range of operating systems and features. The diversity
of algorithms and parameters related to TCP constitutes a heteroge-
neous communication scenario prone to degradation of communication-
intensive applications. Due to total control in the data center, providers
can apply the Virtualized Congestion Control (VCC) to generate op-
timized algorithms. From the tenant’s perspective, virtualization is a
transparently performed. Some technologies have made possible to de-
velop such virtualization. Explicit Congestion Notification (ECN) is a
technique for congestion identification which acts by monitoring the
queues occupancy. Although promising, the specialized literature lacks
on a deep analysis of the VCC impact on the applications. Our work
characterizes the VCC impact on HMR on scenarios in which there are
present applications competing for network resources using optimized
and non-optimized TCP stacks. We identified the HMR has its perfor-
mance substantially influenced by the data volume according to the em-
ployed TCP stack. Moreover, we highlight some VCC limitations.

Keywords: Virtualized Congestion Control ·Hadoop MapReduce · TCP

1 Introduction

One of the key aspects of Infrastructure-as-a-Service (IaaS) clouds is the man-
ageability and malleability provided to its tenants. Specifically, a virtual ma-
chine (VM) can be of several flavors, composed by different configurations of
memory, storage, and CPU. Above all, the client has the control over the op-
erating system (OS) installed on the VM, being able to install and update:
applications, libraries, and OS kernel. Specifically, focusing on Transmission
Control Protocol (TCP), two scenarios are relevant due to the heterogeneity

? Supported by UDESC / FAPESC, developed on LabP2D.

2 Moro, V. et al.

of its configurations [10]: (i) The maintenance complexity and dependencies of
specific software versions are limiting factors for VMs updating. OSs with non-
optimized TCP do not incorporate the latest advances on algorithms related to
congestion control and avoidance; and (ii) Optimized settings related to tem-
porary buffers, slow-start, selective acknowledgment, and so on may circumvent
the fairness originally aimed by congestion control algorithms.

Algorithms for congestion control aid in the recovery of the performance in
the occurrence of bottlenecks, while congestion avoidance algorithms act in the
prediction of eventual losses [3]. Traditionally, TCP controls and avoids conges-
tion at the endpoints of the network [9], without native support of the network
core equipment. Several versions of TCP have been proposed to optimize traffic
performance in data centers (DCs) [21, 1] by changing the interpretation of bi-
nary feedback originally conceived. In some cases, the core network participates
by offering packet tags with alerts of possible bottlenecks [4]. In fact, it is in
the interest of the provider to circumvent the problem imposed by the hetero-
geneous scenario of congestion control algorithms, qualifying the service offered
to their customers. Possible solutions include the provision of communication
resources (bandwidth and configuration of switches) [19, 22, 12, 20] and dynamic
routing queue configuration [10]. However, the techniques listed tend to underuse
communication resources or to have high management complexity [17]. In this
context, Virtualized Congestion Control (VCC) was proposed as an alternative
to standardize non-optimized TCP algorithms [5, 8]. In summary, the providers
have administrative access to the virtual switches or VM hypervisors responsible
for routing the packets between the tenants’ VMs. Thus, a virtualization layer
can intercept non-optimized traffic and handle, when necessary, to meet the re-
quirements of the updated DC protocols. Although promising, the specialized
literature lacks on a deep analysis of the VCC impact on the final applications.

Originally, VCC was analyzed with synthetic charges indicating the efficacy
for scenarios aiming at equity of sharing and maximization of use in bottlenecks
for mostly long flows [5, 8]. However, actual communication loads of applica-
tions traditionally run on clouds DCs have not been analyzed. Specifically, ap-
plications based on Hadoop MapReduce (HMR) have communication flows with
characteristics different from those originally studied [1, 18]. Thus, the aim of
the present work is to analyze the applicability of VCC to HMR applications.
Our main contributions are: (i) Analysis of the execution time of HMR, using
real execution traces, in heterogeneous scenarios using VCC; (ii) Discuss the
perceived impact on HMR regarding the configuration of the marking on the
switches queue; and (iii) Correlate the dropped packets in the switches with the
total execution time. Our experimental analysis indicates applications based on
HMR have a considerable impact when executed on VCC-based environments1.

1 This paper is a revised and expanded version of [14].

Analysis of VCC in Applications based on HMR 3

2 Motivation and Problem Definition

2.1 Data Flow in Hadoop MapReduce

HMR framework is widely used, both for structured and unstructured data pro-
cessing. The optimization of HMR data communication is realized by scheduling
processing on servers close to the data to be processed. The main server, called
Master, takes a metadata view of the entire file tree of the system and manages
the distribution of the tasks to the servers which will process the data (Workers).
The Master monitors the execution in Workers and defines the tasks each one
will execute, either the map or reduce. It is important to note that 33% of the
execution time of HMR is attributed to the TCP-based communication tasks [4],
motivating the accomplishment of this work. Above all, HMR clusters present a
data locale dependency, overloading switches and generating congestion during
different stages of execution [18]. Specifically regarding the TCP perspective,
the HMR flows suffer with switches queues and packets dropped, which triggers
retransmissions on TCP congestion control algorithms.

Applications based on partitioning, processing, and aggregation of informa-
tion, such as HMR, carry control data sensitive to latency, as well as flows for
data synchronization. Thus, latency-sensitive flows compete with background
traffic. Analyzing the occupation of the switches queues, it is possible to note
HMR flows larger than 1 MB have low multiplexing rate and consume a large
portion of the available bandwidth [1], inducing the increased of the latency for
the others flows. DCs are designed for high throughput and low latency. How-
ever, commonly used switches have shared memory-based architectures. Thus,
when multiple flows converge to the same interface, the storage space in queues
can be totally consumed, leading to drop packets.

2.2 TCP Congestion Control in DCs with Multiple Clients

Originally, because TCP is based on binary feedback [3], it only changes its mode
of transmission in the occurrence of segment loss. In the absence of losses, the
transmission window is increased, while in the occurrence, it is decreased [7, 9].
Specifically, congestion is perceived when a timer is terminated or when a set
of duplicate ACKs are received by the sender. Although efficient in the scenar-
ios originally proposed (mainly related to communication over networks with
distinct configurations and capacities), the algorithms are unable to detect and
control the previously listed scenario for HMR, common in DCs [1].

The Explicit Congestion Notification (ECN) technique, an extension of the
TCP/IP stack, has modified the feedback received by the TCP sender, i.e.,
packet loss is eventually replaced by a warning of the possible occurrence of
congestion. Based on this warning, the sender can preventively reduce the vol-
ume of traffic data, mitigating queuing on the intermediate switches. As for the
protocols, the implementation of this mechanism was accomplished through the
introduction of 2 bits in the network layer: ECN-Capable Transport (ECT) and
Congestion Experienced (ECE). The first one indicates the equipment is capable

4 Moro, V. et al.

of conveying congestion notification, while the second one signals a congestion
situation is happening. In the transport layer of destination, when the notifica-
tion is identified, the next segment is marked to inform the congestion situation.
Upon receiving the notification, the sender reduces the congestion window to
avoid loss of segments, and informs its action to the receiver via the bit Conges-
tion Window Reduced (CWR).

The packets experiencing congestion are marked by the intermediate switches.
For this, a constant monitoring of the switching queues is performed, triggering
actions according to the parameters previously defined. In this context, config-
urations of Random Early Detection (RED) [21] can be applied by specifying:
(i) The maximum bandwidth of the link (bytes/s); (ii) The the minimum, max-
imum and snapshot size (to meet bursts) of the queue (bytes); (iii) The average
packet size; (iv) The tolerance for the snapshot size of the packet queue; and (v)
The drop packet probability (from 0.0 to 1.0).

When the packet is received and remains below the minimum specified, no
marking occurs. However, packets which are between the minimum and maxi-
mum thresholds are marked according to the reported probability. Finally, pack-
ets above the maximum threshold are dropped. It is a fact ECN allowed a better
sharing of communication resources in DCs [2]. However, the effective applica-
tion requires uniformity of the algorithms, i.e., the servers must understand the
meaning of the markings realized by the network core. Usually, this requirement
is not take into account in cloud DCs, in which each tenant can execute differ-
ent TCP algorithms. Also, several versions of OSs do not have support enabled
by default for ECN [11]. Thus, while DC implements mechanisms to optimize
traffic, the settings applied on VMs may be conflicting with the ideal scenario.

Although the TCP congestion control algorithms have been improved by
the specialized literature, it is evident that a multi-tenant DC network carries
flows originated from distinct and competitive versions. Moreover, as HMR is a
network-based paradigm, the final performance of an HMR-based application is
directly influenced by the TCP congestion control objective (e.g., fairness, low
latency, high throughput), even when executed by distinct tenants.

3 Virtualized Congestion Control (VCC)

The VCC consists in creating a translation layer for the TCP used by VMs in
order to translate it to an optimized/recognized version used in the DC [8, 5].
In this way, the communication occurs using the TCP version selected by the
provider. It is worthwhile to mention, no changes are needed on the endpoint
hosts. Two approaches to VCC implementation have recently been proposed.
AC/DC [8] implements VCC in virtual switches, obtaining a fine granularity in
the control. Thus, algorithms can be selected for different types of flows, e.g.,
Cubic for external flows to DC and Data Center TCP (DCTCP) for internal
flows. Due to the control is implemented in the virtual switch datapath [16],
all traffic can be monitored. [5] implemented VCC directly in the hypervisor of

Analysis of VCC in Applications based on HMR 5

VMs. In both, the perception of congestion is obtained through network core
marked packets. Fig. 1 presents the canonical architecture for VCC.

Legacy
VM

Hypervisor
or

virtual	switch

IaaS
data	center
(DCTCP)

	SYN	+	ACK	

Data

	ACK

	ACK	+	RWIN

	Data

	SYN

	SYN	+	ECE	

	Data	+	ECT

	ACK

	ACK	+	ECE	

	Data	+	CWR

	SYN	+	ECN	+CWR	
1 2

34

5 6

78

910

11 12

Non-optimized	/	Original Virtualized	CC

Fig. 1. Example of VCC usage.

When a non-optimized (or legacy) application establishes a connection (Fig. 1),
the hypervisor (or virtual switch) monitors the exchange of packets and includes
the information necessary for non-optimized traffic to be recognized by the net-
work as traffic capable of supporting ECN. Initially, non-optimized TCP ap-
plication sends a packet requesting connection (1), which is intercepted (2) to
append the support information ECN. The recipient responds by confirming the
establishment (3, ECE). Again, the packet is intercepted to notify the sender
with a synchronization acknowledgment (4). It is important to note, the con-
firmation sent to the sender with non-optimized TCP algorithm does not have
the information about ECN, which was removed by the virtualizer. The data
sending starts (5), being intercepted to add the bit ECT, informing this flow
is capable of conveying congestion information (6). Subsequently, the recipient
acknowledges the received packet (7). The sender receives packet recognition
from the hypervisor (8). In case of possible occurrence of congestion in the DC
network, the ECE bit is activated (9). When congestion occurs, the sender with
an optimized algorithm is forced to reduce the sending of data through the bot-
tleneck of the receiving window (10), performed by the hypervisor. Finally, the
sender continues to send data (11) to the hypervisor that transfers the data and
the window size set to the recipient (12).

In order to induce the host transmission deceleration with non-optimized
TCP without applying an intrusive technique, the congestion control is ap-
plied over the Receiver Window (RWND). The information internally mea-
sured by the algorithm in VM over the congestion window, congestion Win-
dow (CWND), remains unchanged. Natively, TCP checks min(cwnd, rwnd) to
identify the amount of data which ca be transmitted. On VCC, the value of
RWND is changed to represent the correct value of CWND calculated by the
virtualization algorithm, based on ECN.

AC/DC mechanism source code was not found available to the community.
Thus, [5] was selected for our analysis (Section 4). VCC was implemented in
Linux by a patch to the hypervisor core. In short, a set of intermediate buffers
were created for each TCP connection, i.e., the hypervisor monitors the com-
munication of the VMs. In order to differentiate non-optimized flows and ECN

6 Moro, V. et al.

configurations, the capabilities of VCC and ECN are activated directly by ma-
nipulating the sysctl. It is important to emphasize the described implementation
is a proof of concept. However, the authors have demonstrated the computational
overhead does not impact on the final performance of the communications, i.e.,
the implementation can be used for controlled experimental analysis [5].

4 Experimental Analysis

4.1 Testbed setup, Metrics and Execution Traces

The experiments aim to analyze the impact of VCC on the execution of HMR
applications when executed on VM using non-optimized TCP. Data traffic in
HMR was emulated by MRemu [15] using traces of HiBench benchmarking in a
cluster consisting of 16 servers. MRemu only emulates the HMR traffic (using
Mininet [13]), not performing the data processing. Our experimental testbed is
composed of 16 VMs interconnected by a 1 Gbps Dumbbell topology (2 switches
with 8 VMs each). Dumbbell topology was chosen to simplify the representation
of the network bottlenecks. Background traffic was ingested using iperf tool,
setting the number of communicating TCP pairs in order to represent multiple
tenants disputing the communication capabilities. The iperf servers are con-
nected to Switch 1 while clients are connected to Switch 2 (data source). As
for the physical host, MRemu and Mininet were executed on a computer with
OS GNU/Linux Ubuntu 14.04, AMD Phenom II X 4 core processor, and 8GB
RAM. The VMs originally executed the TCP New Reno.

To analyze the results, four metrics were collected: (i) Elapsed time to run
HMR; (ii) Number of dropped packets on switches; (iii) Switches queue oc-
cupation; and (iv) Amount of background traffic. The first metric represents
the view of the tenant, while the other metrics provide data to do the analysis
of the dropped packets and queue formation in switches from traffic of non-
optimized TCP, virtualized, or optimized (IaaS provider perspective).

4.2 Experimental Scenarios

Three TCP configurations were used in our experimental scenario: (i) TCPVM:
HMR using non-optimized TCP, without support for ECN; (ii) TCPDC: HMR
using TCP optimized by the DC, support enable for ECN; and (iii) VCC: HMR
using Virtualized Congestion Control (VCC). Background traffic was executed
with TCPDC on all presented scenarios, and HMR was executed on TCPVM,
TCPDC, and VCC. ECN and RED switches configurations were based on two
configurations from the bibliography (Table 1) [1, 5]. The first configuration,
RED1, the values of min and max are close, therefore, with no margin of ade-
quacy. In addition, the prob parameter is set to mark 100% of packets, forcing
the rapid reduction of traffic. The configuration identified as RED2, there is a
suitability interval established between the values min and max. This interval
allows the matching of the traffic according to the congestion notification by
marking packets. Still, there is a difference in the maximum queue size.

Analysis of VCC in Applications based on HMR 7

Table 1. RED settings for marking packets in the switch queues.

Configuration min max limit burst prob

RED1 90000 90001 1M 61 1.0

RED2 30000 90000 400K 55 1.0

Regarding to the volume of data transferred between the pairs (Client/Ser-
ver), responsible for the production of background TCPs traffic, two scenarios
are analyzed. Scenario 1 was based on unlimited background load and there
are 3 sets of experiments (2, 4, and 8 pairs), in which is performed a gradual
increase in the number of pairs, and each communicating pair sent the maximum
allowed by the application (and bottleneck). Scenario 2 was planned to have a
controlled background traffic, using TCP load from 2MB to 32GB, and 4 pairs.
We run each scenario 10 rounds, the presented graphs comprise mean, standard
deviation, and variability of the data.

4.3 Result Analysis

The first analysis focuses on the impact of the chosen TCP, and the two configu-
rations of RED, tenant’s perspective. Thus, the elapsed time of HMR execution
was observed, considering smaller the time than better is the result.

Scenario 1 Fig. 2 shows the HMR execution results. Fig. 2(a) indicates TCPDC
has the smallest values, regardless of the number of concurrent pairs and RED
configuration. TCPVM is most susceptible to the configuration difference of
RED. For example, at 8 pairs, the mean time with RED1 was reduced from
535s to 213s using RED2. In this case, we identified the importance of proper
RED configuration to the application behavior. The greatest peculiarity of the
results was the behavior of VCC, which obtained results compatible with the
other protocols when analyzed with 2 pairs, both RED1 and RED2. Using 4
pairs, it remained competitive only with RED1, and proved inefficient with 8
pairs. Using 8 pairs, while HMR / TCPDC using RED1 gets an average time
of 84s, VCC gets 2153s. Worst results were obtained using RED2, reaching to
2234s. Different from the results initially obtained with VCC [5, 8], the analyzed
HMR applications undergo a considerable overhead at run time. Moreover, the
application of VCC is influenced by the ECN and RED configurations, informa-
tion that is abstracted from the tenants. On the other hand, background traffic
(Fig. 2(b)) is practically the same, regardless of which TCP protocol was cho-
sen (when the configuration is RED1). RED2 behavior differs only when 2 pairs
are used. Iperf reaches values close to 130MB/s using TCPDC / TCPVM, and
120MB/s using VCC. The lower throughput identified using RED2 was from
packet conservative marking, i.e., due to the wide marking interval, the TCP
emitters have a conservative behavior, reducing the data sending in order to
avoid congestion. Finally, the background traffic is independent of the HMR
execution time.

8 Moro, V. et al.

RED1 TCPDC RED1 TPCMV RED1 VCC RED2 TCPDC RED2 TPCMV RED2 VCC

Ti
m

e
(s

)

0
50

0
10

00
15

00
20

00
25

00

TCP pairs
2 pairs 4 pairs 8 pairs

(a) HMR execution time.

RED1 TCPDC RED1 TPCMV RED1 VCC RED2 TCPDC RED2 TPCMV RED2 VCC

Th
ro

ug
hp

ut
 (M

B/
s)

0
50

10
0

15
0 TCP pairs

2 pairs 4 pairs 8 pairs

(b) Throughput of background traffic.

Fig. 2. HMR execution time and throughput of background.

The second approach is the analysis in the provider’s perspective. In this
case, the observation is in the traffic of the switches, through the occupation of
the queues. Figs. 3 and 4 resume the results for Switches 1 and 2, respectively.
Specifically, Figs. 3(a) to 4(f) axis x presents the probability of occurrence and,
axis y the accumulated value of the queues (expressed as CDF - Cumulative
Distribution Function). The tendency of queuing behavior in the switches is
the higher the number of TCP pairs, than greater the number of queues. This
behavior was noted in all the scenario variations for the TCPVM protocols and
VCC, the only exception was Figs. 3(a) and 3(d) which are all similar. TCPDC
and RED2 protocols, regardless of the switch, 2 pairs presents a larger queue
occurrence values than 8 pairs, indicating the total occupancy (400000 bytes)
and holding sharing equity (indicated by the throughput, Fig. 2(b)).

We also counted the number of dropped packets in each scenario (Figs. 5(a)
and 5(b)). The smallest losses are with the TCPDC protocol, regardless of the
number of pairs or switch. Switch 1 (connecting HMR and iperf servers), the
number of dropped packets using RED2 is greater than the number dropped by
RED1, both for TCPVM and for VCC. Switch 2 (connecting HMR and iperf
clients), the highlight is the high number of packets dropped by VCC to 8 pairs,
regardless of RED configuration adopted. Finally, it is important to note that
approximately 75% of the data flows transmitted in the analyzed HMR appli-
cations carry a maximum of 7MB, being 10MB the largest volume transmitted.
The volume is less than originally analyzed in VCC [5, 8], being susceptible to
the impact of the ECN mark. The queues occupation in the switches indicated
the RED configuration is directly related to the application. Even if we con-
trol the queue occupation, the volume of dropped packets (Figs. 5(a) and 5(b)),
especially for Switch 2) is abusive to VCC when compared with TCPDC.

In summary, the analysis has shown VCC application is promising for pur-
suing fairness in a heterogeneous environment, such as clouds (presented by
the background throughput on Fig. 2(b)). However, the use of VCC for HMR
applications requires the proper configuration of the switches queues, a task com-
monly performed by the providers because it is needed administrative access to
configure it [10, 17].

Analysis of VCC in Applications based on HMR 9

●

●

●

●
●
●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
5

10
50

50
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(a) TCPDC using RED1.

●
●
● ●●●●

●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●●● ● ● ● ● ●●●● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
5

10
50

50
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(b) TCPDC using RED2.

●

●
●
●●

●● ●●●●
●● ●●●●● ●●●●● ●●●●● ●●●●●● ●●●●● ●●●●● ●●●●● ●●●● ●●●●● ● ● ● ● ●●

0.0 0.2 0.4 0.6 0.8 1.0

1
5

10
50

50
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(c) TCPVM using RED1.

●

●
●
●●

●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●●● ●●●● ● ● ●●●● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0
1

5
10

50
50

0
C

D
F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(d) TCPVM using RED2.

●

●
●
●●

● ●●●
●●●●●

●●●●● ●●●●●●●●●
●●●●● ●●●●●●●●●●●● ● ●●●● ●●● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
5

10
50

50
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(e) VCC using RED1.

●

●
●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
5

10
50

50
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(f) VCC using RED2.

Fig. 3. Queue occupation on Switch 1.

Scenario 2 This scenario uses 4 ECN-aware TCP pairs to generate background
traffic while HMR is being executed. Fig. 6 presents the HMR execution time
for RED1 configuration, and Fig. 6(a) reveals that there is no direct correlation
between background load and HMR execution time when ECN is used for all
nodes (including HMR). In turn, Fig. 6(b) summarises results for HMR without
ECN support. Background traffic with loads between 1GB and 32GB induced
an overhead on HMR execution time. When applying the VCC (Fig. 6(c)), the
problem is soften for background loads between 1MB and 256MB. However,
a high variation is observed on all other scenarios, justified by the switches
queue occupancy. Finally, the results for RED2 configuration are summarized in
Figs. 6(d)-6(f). The minimum threshold for RED2 configuration is 1/3 of RED1
value, leading to an early packets marking, while the upper-bound limit is 3x

10 Moro, V. et al.

●
●

●

●
●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●● ● ● ●● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
10

0
10

00
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(a) TCPDC using RED1.

●

●

●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
10

0
10

00
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(b) TCPDC using RED2.

●

●

●

●
● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●● ●●●● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
10

0
10

00
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(c) TCPVM using RED1.

●

●

●

●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●● ● ● ● ●●

0.0 0.2 0.4 0.6 0.8 1.0
1

10
0

10
00

0
C

D
F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(d) TCPVM using RED2.

●

●

●
●●● ●● ●●●●● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
10

0
10

00
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(e) VCC using RED1.

●

●

●
●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●●●● ●●●● ●● ● ● ●● ●

0.0 0.2 0.4 0.6 0.8 1.0

1
10

0
10

00
0

C
D

F

Probability

●

TCP pairs
2 pairs
4 pairs
8 pairs

(f) VCC using RED2.

Fig. 4. Queue occupation on Switch 2.

RED1 configuration, increasing the marking interval. In this sense, the wide
marking interval explains the variation observed with RED2 results.

Regarding the dropped packets originated by the introduction of background
traffic, Figs. 7(a)-7(c) summarize results for RED1 configuration, while results
for RED2 configuration are given by Figs. 7(d)-7(f). TCPDC with RED1 config-
uration has the values concentrated between 1900 and 4000 bytes, and smaller
background traffic loads (2MB, 4MB, and 8MB) resulted on higher dropped
packets. The loss in larger loads is less influenced by the stabilization of the
congestion control window, while smaller background loads are more suscepti-
ble to aggressiveness in opening the window. TCPVM (Fig. 7(b)) significantly
increased the amount of dropped packet on all background loads. Background
loads which are greater than 4GB, the values remained above 35000 bytes. RED1

Analysis of VCC in Applications based on HMR 11

●

● ●

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

10000

20000

30000

40000

50000

#
P
a
ck

e
ts

DC VM VCC

RED1

DC VM VCC

RED2

TCP pairs

TCP version

TCP Conf.

(a) Dropped packets on the Switch 1.

●

●

●

●

●

●

●

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

0

20000

40000

60000

80000

100000

120000

140000

#
P
a
ck

e
ts

DC MV VCC

RED1

DC MV VCC

RED2

TCP pairs

TCP version

TCP Conf.

(b) Dropped packets on the Switch 2.

Fig. 5. Dropped packets on Switches 1 and 2.

configuration and the use of VCC (Fig. 7(c)) decreases the packet dropping oc-
currence on smaller background traffic (2MB to 512MB). On the other hand, it
dramatically increases the packet dropping for background loads between 1GB
at 32GB, when compared to TCPVM scenario. In turn, the dropped packets for
TCPDC with RED2 configuration (Fig. 7(d)) oscillated following the increase in
background traffic load, with an upper-bound of 10000 bytes, while for TCPVM
(Fig. 7(e)) varies from 30000 to 70000 bytes. Using VCC enabled (Fig. 7(f)) the
amount of dropped packets is decreased for small background loads.

The last set of data for Scenario 2 is the switches queue occupancy, summa-
rized by Fig. 8. Initially, for RED1 configuration, TCPDC shows a gradual distri-
bution of the queues in relation to the volume of background traffic (Fig. 8(a)),
while the TCPVM scenario (Fig. 8(b)) the probability of queue occupancy in-
creased 50% when compared to TCPDC. In addition, the VCC scenario with
RED1 configuration (Fig. 8(c)) indicated the concurrent HMR execution time
with background loads up to 256MB, VCC was able to keep the switches queue
occupancy just over 5000 bytes, eventually outperforming the TCPDC scenario
(for 8 and 16GB background traffic). Finally, results for RED2 configuration are
summarized by Figs. 8(d), 8(e), and 8(f) for TCPDC, TCPVM, and VCC. This
corroborates what has been previously concluded in Scenario 1; VCC is suscep-
tible to the background traffic load and consequently impacts on the execution
time of HMR.

5 Related Work

Related work comprises studies on explicit congestion notification, techniques for
VCC, characterization and optimization of HMR traffic in DC. Initially, Sally
Floyd [6] discusses the use of ECN in TCP. Simulations using New Reno and
RED markers indicated the benefits of this feature in congestion control, avoid-
ing losses by anticipating and predicting likely network saturation scenarios.
Although disruptive, the implementation of RED on modern operating systems
was recently largely adopted, motivating the present work. Specifically, Kuh-

12 Moro, V. et al.

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

2 4 8 16 32 64 128 512M 1G 2 4 8 16 32

40

60

80

100

120

140

160

Background Load 2MB−512MB;1GB−32GB

T
im

e
(s

)

(a) TPCDC - RED1.

●
●

●
●

●

●

●

●

●

2 4 8 16 32 64 128 512M 1G 2 4 8 16 32

40

60

80

100

120

140

160

Background Load 2MB−512MB;1GB−32GB

T
im

e
(s

)

(b) TCPVM - RED1.

● ●

●

●

●

●

●

●●

2 4 8 16 32 64 128 512M 1G 2 4 8 16 32

50

100

150

200

250

Background Load 2MB−512MB;1GB−32GB

T
im

e
(s

)

(c) VCC - RED1.

●

●

●

●

●

●

●

●

●

●

●

●

2M 4M 8M 16M 64M 128M 512M 1G 2G 4G 8G 32G

50

100

150

200

250

300

350

400

Background Load 2MB−512MB;1GB−32GB

T
im

e
(s

)

(d) TCPDC - RED2.

●

●

●

●

●

●

● ●

●

●

●

●

2 4 8 16 32 64 128 512M 1G 2 4 8 16 32

50

100

150

200

250

300

Background Load 2MB−512MB;1GB−32GB

T
im

e
(s

)

(e) TCPVM - RED2.

●

●

●

●

●

●

● ●

●

●

●

●

2 4 8 16 32 64 128 512M 1G 2 4 8 16 32

50

100

150

200

250

300

Background Load 2MB−512MB;1GB−32GB

T
im

e
(s

)

(f) VCC - RED2.

Fig. 6. HMR execution time with 4 pairs of background traffic.

lewind et al. [11] addresses the historical evolution of ECN in OSs, presenting
a view of other ways to congestion prevention and mitigation. In summary, the
work indicates the absence of a de facto solution to bypass the sharing disparity
when multiple algorithms for congestion control are sharing bottlenecks. The
present work is based on such assumption. Indeed, we envisage a multi-tenant
DC scenario in which multiple users, each one with a private TCP congestion
control algorithm, share the data center resources (processing and communica-
tion). For instance, the tenants virtual machines or containers can be configured
with private TCP options, leading to an unfairness sharing of congested links.

Aware of the diversity of applications running on a cloud DC with out-
dated TCP/IP stacks, the specialized literature [5, 8] proposed flexibilization in

Analysis of VCC in Applications based on HMR 13

●

●

●

●

●

●

●
●

2 4 8 16 32 64 128 512M 1G 2 4 8 16 32

1000

2000

3000

4000

5000

Background Load 2MB−512MB;1GB−32GB

D
ro

pp
ed

 P
ac

ke
ts

 (
B

)

(a) TCPDC - RED1.

●

●

●

●

●

2 4 8 16 32 64 128 256 1G 2 4 8 16 32

15000

20000

25000

30000

35000

40000

45000

50000

Background Load 2MB−512MB;1GB−32GB

D
ro

pp
ed

 P
ac

ke
ts

 (
B

)

(b) TCPVM - RED1.

●

●

●

● ●

2 4 8 16 32 64 128 256 1G 2 4 8 16 32

30000

40000

50000

60000

Background Load 2MB−512MB;1GB−32GB

D
ro

pp
ed

 p
ac

ke
ts

 (
B

)

(c) VCC - RED1.

●

2M 4M 8M 16M 64M 128M 512M 1G 2G 4G 8G 16G

4000

6000

8000

10000

12000

14000

Background Load 2MB−512MB;1GB−32GB

D
ro

pp
ed

 p
ac

ke
ts

 (
B

)

(d) TCPDC - RED2.

●

●

2 4 8 16 32 64 128 256 1G 2 4 8 16 32

4e+04

6e+04

8e+04

1e+05

Carga Background de 2MB−512MB;1GB−32GB

P
ac

ot
es

 P
er

di
do

s
(B

)

(e) TCPVM - RED2.

●

●

2 4 8 16 32 64 128 256 1G 2 4 8 16 32

4e+04

6e+04

8e+04

1e+05

Background Load 2MB−512MB;1GB−32GB

D
ro

pp
ed

 p
ac

ke
ts

 (
B

)

(f) VCC - RED2.

Fig. 7. Total dropped packets for Scenario 2.

configuration, defining the concept of VCC. This was a key motivator for our
performance analysis using HMR applications. Alizadeh et al. [1] has identi-
fied communication patterns in DC that host HMR: query traffic, background
traffic, competing flows of different sizes. Furthermore, Wu et al. [21] addresses
the congestion traffic caused by incast traffic which occurs when multiple flows
converge to the same receiver. We advanced the field by investigated the per-
formance impact when running HMR, a real large-scale distributed application.
Instead of applying synthetic loads, our experiments were based on traces of
HMR execution performed on a real cluster.

14 Moro, V. et al.

●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●
●●
●●

●

●

●
●

●

0 5000 10000 15000 20000 25000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF ocorrência de filas (4 pares)

P
ro

ba
bi

lid
ad

e

●

●

●

●

●

Trafégo

2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB
512MB
1GB
2GB
4GB
8GB
16GB
32GB

(a) TCPDC - RED1.

●
●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●
●
●
●

●

●

●

0 5000 10000 15000 20000 25000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF ocorrência de filas (4 pares)

P
ro

ba
bi

lid
ad

e

●

●

●

●

●

Trafégo

2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB
512MB
1GB
2GB
4GB
8GB
16GB
32GB

(b) TCPVM - RED1.

●●
●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●

●

●
●●

●
●

0 5000 10000 15000 20000 25000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF ocorrência de filas (4 pares)

P
ro

ba
bi

lid
ad

e

●

●

●

●

●

Trafégo

2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB
512MB
1GB
2GB
4GB
8GB
16GB
32GB

(c) VCC - RED1.

●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●●
●●
●●
●
●
●
●
●

●
●

●

●

0 20000 40000 60000 80000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF ocorrência de filas

P
ro

ba
bi

lid
ad

e

●

●

●

●

●

Trafégo

2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB
512MB
1GB
2GB
4GB
8GB
16GB
32GB

(d) TCPDC - RED2.

●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●●

●
●

●

0 5000 10000 15000 20000 25000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF ocorrência de filas

P
ro

ba
bi

lid
ad

e

●

●

●

●

●

Trafégo

2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB
512MB
1GB
2GB
4GB
8GB
16GB
32GB

(e) TCPVM - RED2.

●
●●●

●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●

●

●

0 5000 10000 15000 20000 25000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF ocorrência de filas

P
ro

ba
bi

lid
ad

e

●

●

●

●

●

Trafégo

2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB
512MB
1GB
2GB
4GB
8GB
16GB
32GB

(f) VCC - RED2.

Fig. 8. Switches queue occupancy for Scenario 2.

Regarding the management of IaaS DCs, Popa and colleagues [17] investi-
gated the tough negotiation when establishing bandwidth allocation policies to
ensure a proportionality of network usage, granting a minimum guarantee for
the flow of the VM and at the same time to avoid idleness, inducing the high
occupation of the network. In turn, Zahavi et al. [22] proposes a new abstraction
of cloud services, called Link-as-a-Service (LaaS), with isolation between virtu-
alized communication links. The client can choose to introduce in the link the
congestion control algorithm that best meets the needs of their application, that
is, the decision does not belong to the provider. Both works are examples of how
VCC can be combined with bandwidth reservation techniques to provide Quality
of Service (QoS) requirements. In our analysis we stressed the HMR application

Analysis of VCC in Applications based on HMR 15

with heavy competitive load causing the worst-case scenario for congestion con-
trol. A future work can combine bandwidth reservation techniques to soften the
degradation of HMR performance when executed atop VCC-enabled DCs.

6 Final Considerations & Future Work

IaaS clouds allow tenants to install and configure their OS according to their
hosted applications requirements. Such advent diffused the malleability of VMs,
however, resulted in a heterogeneous scenario running on DC. Above all, several
clients do not upgrade libraries, modules, and OSs due to technical constraints
on legacy applications. Consequently, outdated versions of TCP algorithms for
congestion control compete with updated versions in DCs. To mitigate disparity,
virtualized congestion control was recently proposed.

The present work investigated the application of VCC in the execution of
applications HMR, executed in VMs with non-optimized TCP. The experimental
analysis was performed with traces of HMR execution on a dedicated cluster.
Analyzing the results, was evidenced the virtualization is directly dependent on
the configurations applied in the switches. Above all, experiments following the
settings indicated in the literature (referred to as RED1 and RED2) resulted in
an impact on the execution time of the HMR applications. The results advanced
the TCP congestion control literature by empirically analysing the execution
of a trace from a real communication-intensive application atop a VCC-based
DC. As a continuity perspective, it is clear that VCC is a promising technology,
however, as the results indicated, the definition of optimized RED and ECN
configurations are essential and of course a continuum line.

References

1. Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B.,
Sengupta, S., Sridharan, M.: Data center tcp (dctcp). SIGCOMM Comput. Com-
mun. Rev. 40(4), 63–74 (Aug 2010)

2. Alizadeh, M., Javanmard, A., Prabhakar, B.: Analysis of dctcp: Stability, conver-
gence, and fairness. In: Proceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems. pp. 73–84. SIG-
METRICS ’11, ACM (2011)

3. Chiu, D.M., Jain, R.: Analysis of the increase and decrease algorithms for conges-
tion avoidance in computer networks. Comput. Net. ISDN Sys. 17(1), 1–14 (1989)

4. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data
transfers in computer clusters with orchestra. SIGCOMM Comput. Commun. Rev.
41(4), 98–109 (Aug 2011)

5. Cronkite-Ratcliff, B., Bergman, A., Vargaftik, S., Ravi, M., McKeown, N., Abra-
ham, I., Keslassy, I.: Virtualized congestion control. In: Proceedings of the 2016
ACM SIGCOMM Conf. pp. 230–243. SIGCOMM ’16, ACM (2016)

6. Floyd, S.: Tcp and explicit congestion notification. SIGCOMM Comput. Commun.
Rev. 24(5), 8–23 (Oct 1994)

7. Ha, S., Rhee, I., Xu, L.: Cubic: A new tcp-friendly high-speed tcp variant. SIGOPS
Oper. Syst. Rev. 42(5), 64–74 (Jul 2008)

16 Moro, V. et al.

8. He, K., Rozner, E., Agarwal, K., Gu, Y.J., Felter, W., Carter, J., Akella, A.: Ac/dc
tcp: Virtual congestion control enforcement for datacenter networks. In: Proc. of
the 2016 SIGCOMM Conference. pp. 244–257. SIGCOMM ’16, ACM (2016)

9. Jacobson, V.: Congestion avoidance and control. SIGCOMM Comput. Commun.
Rev. 18(4), 314–329 (Aug 1988)

10. Judd, G.: Attaining the promise and avoiding the pitfalls of tcp in the datacenter.
In: Proceedings of the 12th USENIX Conference on Networked Systems Design
and Implementation. pp. 145–157. NSDI’15, Berkeley, CA, USA (2015)

11. Kühlewind, M., Neuner, S., Trammell, B.: On the state of ecn and tcp options on
the internet. In: Proceedings of the 14th International Conference on Passive and
Active Measurement. pp. 135–144. PAM’13, Berlin, Heidelberg (2013)

12. Kumar, P., Dukkipati, N., Lewis, N., Cui, Y., Wang, Y., Li, C., Valancius, V.,
Adriaens, J., Gribble, S., Foster, N., Vahdat, A.: Picnic: Predictable virtualized
nic. In: Proceedings of the ACM Special Interest Group on Data Communication.
pp. 351–366. SIGCOMM ’19, ACM (2019)

13. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: Rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. pp. 19:1–19:6. Hotnets-IX, ACM (2010)

14. Moro, V., Pillon, M.A., Miers, C., Koslovski, G.: Análise da virtualização do
controle de congestionamento na execução de aplicações hadoop mapreduce. In:
Simpósio de Sistemas Computacionais de Alto Desempenho - WSCAD (oct 2018)

15. Neves, M.V., De Rose, C.A.F., Katrinis, K.: Mremu: An emulation-based frame-
work for datacenter network experimentation using realistic mapreduce traffic. In:
Proc. of the 2015 IEEE 23rd Int. Symp. on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. pp. 174–177. MASCOTS ’15 (2015)

16. Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J., Gross,
J., Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and
implementation of open vswitch. In: Proceedings of the 12th USENIX Conference
on Networked Systems Design and Implementation. pp. 117–130. NSDI’15 (2015)

17. Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Ratnasamy, S., Stoica,
I.: Faircloud: Sharing the network in cloud computing. In: Proc. of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication. pp. 187–198. SIGCOMM ’12, ACM (2012)

18. Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social network’s
(datacenter) network. SIGCOMM Comput. Commun. Rev. 45(4), 123–137 (2015)

19. de Souza, F.R., Miers, C.C., Fiorese, A., Koslovski, G.P.: Qos-aware virtual infras-
tructures allocation on sdn-based clouds. In: Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. pp. 120–129.
CCGrid ’17, IEEE Press, Piscataway, NJ, USA (2017)

20. Vicat-Blanc Primet, P., Anhalt, F., Koslovski, G.: Exploring the virtual infras-
tructure service concept in Grid’5000. In: 20th ITC Specialist Seminar on Network
Virtualization. Hoi An, Vietnam (May 2009)

21. Wu, H., Ju, J., Lu, G., Guo, C., Xiong, Y., Zhang, Y.: Tuning ecn for data cen-
ter networks. In: Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies. pp. 25–36. CoNEXT ’12, ACM (2012)

22. Zahavi, E., Shpiner, A., Rottenstreich, O., Kolodny, A., Keslassy, I.: Links as a
service (laas): Guaranteed tenant isolation in the shared cloud. In: Proceedings
of the 2016 Symposium on Architectures for Networking and Communications
Systems. pp. 87–98. ANCS ’16, ACM (2016)

