
Network traffic characterization in the control network of OpenStack
based on virtual machines state changes

Adnei W. Donatti 1 a, Guilherme P. Koslovski1 b, Maurı́cio A. Pillon1 c, and Charles C. Miers1 d

1Graduate Program in Applied Computing (PPGCA), Santa Catarina State University (UDESC), Brazil
adnei.donatti@edu.udesc.br, {guilherme.koslovski, mauricio.pillon, charles.miers}@udesc.br

Keywords: Cloud computing, OpenStack, Network traffic, Characterization

Abstract: The adoption of private clouds is an option for optimizing the use and organization of computing resources.
Although the cloud benefits are been known for some time, there are still questions on how to plan the cloud
infrastructure in order to avoid basic network performance issues. OpenStack is one of the most widely used
open source solutions for building private Infrastructure as a Service (IaaS) clouds. OpenStack distributes
network traffic across multiple interfaces and virtualized networks, which connect hosts to its cloud services,
divided into the domains: control, public, or guest. The present work aims to characterize network traffic in the
OpenStack control domain produced by changing the state of virtual machines (VMs). There are few works
related to the network infrastructure scenario on private clouds, research in this area is generally focused on
public domain or guest domain operations. In this sense, we performed a characterization in the OpenStack
administrative network. In order to perform OpenStack network characterization, experimentation methods
were used to identify operating services as well as to measure network traffic in the OpenStack control domain
during a set of common operations in VMs.

1 Introduction

Private cloud computing operates on its own in-
frastructure, maintained by the organization which
owns it. Thus, all cloud maintenance as well as the
security / performance aspects are responsibility of
this organization. In addition, private clouds aims
to meet the necessities of the owner organization,
and are accessible only by authorized users, ensuring
the organization control over its resources (Jadeja &
Modi, 2012). In this context, network traffic analysis
/ characterization is relevant to discover information
regarding to cloud security and performance.

OpenStack in an open source software which al-
lows to create and manage private or public IaaS
clouds. IaaS private clouds using OpenStack typi-
cally have VMs as their base unit, but it also avail-
able container and bare metal capabilities. Inside the
cloud provider’s infrastructure, multiple network in-
terfaces and virtualized networks are employed to en-
sure network traffic isolation. However, this isola-

a https://orcid.org/0000-0002-4085-9640
b https://orcid.org/0000-0003-4936-1619
c https://orcid.org/0000-0001-7634-6823
d https://orcid.org/0000-0002-1976-0478

tion is also necessary to avoid some cloud administra-
tive operation affect the network performance from
the users of these cloud services and/or other cloud
provider administrative operations. For example, the
process of creating a new instance of a VM typi-
cally involves copying the VM image from one com-
puter to another and this could mean a network traffic
volume of over 10Gb. OpenStack provides methods
for cloud administrators to manage the cloud perfor-
mance (OpenStack, 2019c).

There are few studies related to the analysis of
the cloud providers administrative network traffic.
Mainly, the works in this area focused on the user
perspective (Chaudhary, Aujla, Kumar, & Rodrigues,
2018; Alenezi, Almustafa, & Meerja, 2019), re-
linquishing the internal operations, and behavior of
the cloud provider. Thus, this paper aims to study
the provider’s infrastructure, specially its networking
layer related to how the most common user operations
over an VM instance (e.g., create, stop, etc.) impacts
on the administrative network of the provider using
OpenStack. An accurate traffic analysis and charac-
terization enables an efficient management of the net-
work resources (e.g., accurate bandwidth allocation).

This article is organized as follows. Section 2
presents a cloud computing overview and introduces



OpenStack aspects. Section 3 explains the problem
motivation, and related work. Section 4 discusses the
characterization approach adopted and scenario. Sec-
tion 5 shows our experiments and results. Finally,
Section 6 presents our analysis and characterization.

2 Cloud computing & OpenStack

Cloud computing allows an optimized and on de-
mand way of offering and consuming computational
resources such as processing, storage and networking.
Cloud solutions comprise the orchestration and man-
agement of several well established technologies, e.g.,
virtualization, Network File System (NFS), Software
Defined Networking (SDN), etc. Moreover, virtual-
ization is one of the most relevant techniques for the
cloud computing paradigm. Virtualization provides
the capability of better exploiting physical hardware,
which is one of core concepts in cloud computing.

In this context, there are several open source
cloud solution software, e.g., OpenStack, CloudStack,
and Open Nebula. In fact, OpenStack adoption has
evolved in multiple industries (OpenStack, 2018a)
making it a very popular cloud solution.

OpenStack is an operating system for clouds al-
lowing to control a large pool of resources through-
out a data center (OpenStack, 2019c). Currently,
OpenStack has twenty releases and a new release is
launched every six months. OpenStack is a modular
solution providing a wide range of services, and sev-
eral optional modules. Among the most fundamental
OpenStack modules are:

• Horizon: provides a dashboard service used for
cloud overview and management.

• Nova: Responsible for the distribution and man-
agement of instances, e.g., initialization, schedul-
ing, and deallocation of VMs;

• Neutron: provides network connectivity for
OpenStack services and user instances;

• Glance: manages the storage and retrieval images
of VMs and containers;

• Swift: responsible for the storage and retrieval of
unstructured objects;

• Cinder: provides persistent block storage for run-
ning instances; and

• Keystone: provides authentication and authoriza-
tion services.

OpenStack services can be distributed all the way
through the data center hosts, but they still interact
with each other in order to provide cloud services

(e.g., VM access and configuration, Figure 1). Thus,
the services distribution must be planned in order to
meet the consumer performance requirements.

Horizon

Neutron

Cinder Nova

Keystone

Glance Swift

VM

Provides dashboard

interface

Provides

connectivity

for 

Provisions

Provides

images

for 

Stores

images

Provides 

authorization

Stores

volumes

Provides

volumes

Figure 1: Services interaction related do VM operation.

Figure 2 shows the OpenStack network connec-
tivity organization (OpenStack, 2019b). OpenStack
deployment may be more or less complex due to the
scenario and consumer requirements.

Servidor de rede

neutron-metadata-
agent

neutron-DHCP-agent

neutron-L3-agent

neutron-*-plugin-agent

Servidor de rede

neutron-metadata-
agent

neutron-DHCP-agent

neutron-L3-agent

neutron-*-plugin-agent

Servidor de
Computação

nova-compute

neutron-plugin-agent

SDN Service
Node

Servidor de
Computação

nova-compute

neutron-plugin-agent

Compute Node

nova-compute

neutron-plugin-agent

Cloud
Controller 

Node

neutron-server

SQLdb

nova-scheduler

keystone

AMPQ

nova-api

Dashboard

HorizonAPI

 Internet

External

Guest

Network Node

neutron-metadata-agent

neutron-DHCP-agent

neutron-L3-agent

neutron-*-plugin-agent

Management

Figure 2: OpenStack networking setup (OpenStack, 2019a).

A short explanation about the networking setup
presented on Figure 2 (OpenStack, 2019a):

• Management network: most internal network,
it should be reachable only within the data cen-
ter. OpenStack components communicate over
the Management network and it is considered the
Management Security Domain. All communica-
tions and calls between services are performed
through this network. VM images and miscel-
laneous requests are transmitted through this do-
main, as well as the access to data stored on vol-
umes (i.e., Cinder, Glance, and Swift) access and
status checks.

• Guest network: used for VM communication
within the cloud deployment. This network is
considered the Guest Security Domain. User net-
work traffic is typically isolated using VLANs.



• External network: the addresses on this network
may be reachable by the Internet. Depending on
the deployment configurations, the External net-
work is used to provide VMs with Internet access.
This network is in of the Public Security Domain.

• API network: this network is used in order to ex-
pose all OpenStack Application Programming In-
terfaces (APIs) to tenants, thus it’s reachable by
the internet as well. The API network may be
the same network as the External network and it’s
considered the Public Security Domain.
OpenStack cloud solution is very flexible and al-

lows several ways of deployment. It’s important to
keep in mind that inter-services communications oc-
cur no matter which topology is chosen. Thus, mes-
saging between services is an essential process for
correct operation of the cloud environment. The min-
imal setup requires two kinds of nodes, one of them
is the Cloud Controller node and the other one is the
Cloud Compute node (Figure 3).

SQL Server

(MariaDB /

MySQL)

RabbitMQ

Apache

nova-scheduler

nova-api

glance-api

glance-registry

Keystone

neutron-server

neutron-*-agent

Swift

Cinder

Horizon

Hypervisor

neutron-

openvswitch-

agent

nova-compute

Network Service

Storage Service

External

Technology

Compute Service

Other Services

Controller Node / 

Network Node
Compute Node

Storage

Technology (LVM,

etc)

Figure 3: Minimal topology for OpenStack deployment.
OpenStack services can be distributed across var-

ious types of nodes (Figure 4) and these can be
replicated to increase the horizontal scalability of the
cloud. The Compute Node replication is the most
common approach.

SQL Server
(MariaDB / MySQL)

RabbitMQ
Apache

nova-scheduler
nova-api

glance-api
glance-registry

Keystone

neutron-server
neutron-*-agent

swift-proxy

cinder-api
cinder-scheduler

Horizon

Hypervisor

neutron-
openvswitch-agent

nova-compute

swift-object
swift-account

swift-container

Storage Technology
(LVM, etc)

cinder-backup
cinder-volume

Network Service

Storage Service

External Technology

Compute Service

Other Services

Controller Node /
Network Node Compute Node Storage Node

Figure 4: Basic topology for OpenStack deployment.
Figure 4 shows an example of a topology in which

the block storage service (Cinder) and object storage

were moved to a Storage Node. The planning com-
plexity of the network topology increases when deal-
ing with more than two types of nodes.

3 Motivation & Related work

The cloud provider infrastructure is essential to
guarantee a satisfactory operation, high performance,
and scalability. Cloud provider infrastructure com-
prises several computer, switches, routers, and stor-
age which can be organized / connected using sev-
eral different approaches. Although the organization
of the provider’s infrastructure is not a popular re-
search subject, there is no doubts there are many ques-
tions about which criteria should be used to guide a
cloud infrastructure design. Moreover, most research
in this area focus on analyzing the cloud infrastructure
from the user perspective (Aishwarya. K & Sankar,
2015; Shete & Dongre, 2017; Chaudhary et al., 2018;
Alenezi et al., 2019), relinquishing the internal oper-
ations and behavior of the cloud provider. Thus, there
is a lack of information regarding how tasks submit-
ted by the consumers (e.g., VM launch) may impact
the behavior of the management network.

OpenStack has several services which can be re-
lated to perform a consumer request over a VM in-
stance (Figure 1). These services (listed in Fig-
ures 3 and 4) can be specifically developed for Open-
Stack (e.g., Nova, Cinder, Horizon, etc.) or External
Services (e.g., Apache, Xen, KVM, MariaDB, Rab-
bitMQ, etc.) used by OpenStack services to accom-
plish its tasks. Although it is simple for the consumer
to request a VM instance to launch by simple com-
mand (API or Horizon, Figure 2), on the provider in-
frastructure this means the smooth execution of var-
ious tasks between OpenStack Services and External
Services using several interfaces (network and soft-
ware). However, if any service is allocated to a spe-
cific node (e.g., Cinder - Figure 4) communication
will continue to exist but will be between nodes.

Cloud performance depend on analyzing its be-
havior while the cloud is being used (Bruneo, 2014).
There is the need for identifying relevant cloud opera-
tions. Several cloud operations comprises some tasks
in the networking layer, and demand analysis of what
is being transmitted through the network and its fi-
nality. Thus, the problem here being discussed lays
upon the lack of information about operations occur-
ring within the cloud providers networking layer (spe-
cially the internal network traffic). Network traffic
characterization helps on this understanding by using
techniques and methods which enable a systematized
network traffic measurement and identification.



Table 1: Related work comparison.

Criteria
(Sankari, Varalak-
shmi, & Divya,
2015)

(Flittner & Bauer,
2017)

(Gustamas &
Shidik, 2017)

(Venzano &
Michiardi, 2013)

(Sciammarella,
Couto, Rubinstein,
Campista, & Costa,
2016)

CR1-Collect traffic on the OpenStack cloud management network

Partially. The
document focus
on analyzing the
SDN traffic of data
centers

No Yes No Yes

CR2-Classify the network traffic regarding the state changes in the virtual machine No No No No
Partially. Only VM
creation and termi-
nation

CR3-Analyze the collected traffic in order to identify which service the packets are related No No No No No

CR4-Store the characterized traffic into a database Not informed by the
author

Not informed by the
authors No Not informed by the

authors
Not informed by the
authors

CR5-Identify the timing in which packet was collected (timestamp) Yes Not informed by the
authors No Not informed by the

authors Yes

In this sense, this paper proposes an analysis and
characterization of the network traffic in the provider
infrastructure, specifically in the management net-
work, related to VM operations triggered by the con-
sumers (i.e., end users) on an OpenStack cloud.

Regarding the related work, we defined five crite-
ria which are used to compare our analysis and char-
acterization to other works (Table 1). The work of
(Sciammarella et al., 2016) is the most related one
to our proposal. However, the authors (Sciammarella
et al., 2016) focus only on the network traffic amount
generated by creating and destroying multiple VM in-
stances in geo-distributed collaborative clouds. The
authors do not separate traffic between services, nor
do they try to identify the time to perform operations
and the amount of calls for each OpenStack service.

4 Characterization & Proposal

Traffic classification and characterization is not a
new research topic. In this context, traffic character-
ization has been a task of considerable importance in
the area of network management and security. Thus,
through the use of traffic classification / character-
ization techniques, benefits such as increased accu-
racy for network resource allocation can be achieved.
Therefore, traffic characterization is also a task used
to understand and solve performance issues in com-
puter networks (Dainotti, Pescape, & Ventre, 2006).

In general, the study of network traffic is sepa-
rated into two steps (Dainotti et al., 2006): (i) mea-
surement: the collection of data traveling on the
network; and (ii) traffic analysis is performed to
identify/classify characteristics relevant to the prob-
lem. The traffic measurement can employ several
tools to capture the data traveling across the net-
work (e.g., TCPdump, and Wireshark). Depending
on how measurement is realized, it can be classified
as (Williamson, 2001): Active (network traffic cre-
ation by the monitoring system, inducing specific sit-
uations) and Passive (capture only existing network
traffic). The most significant techniques used in In-

ternet traffic classification are (Dainotti, Pescape, &
Claffy, 2012; Finsterbusch, Richter, Rocha, Muller,
& Hanssgen, 2014):

• Port-based. Most common method for traffic clas-
sification. Consists on parsing the communication
ports of the TCP / UDP header in order to create
an association with the applications/services.

• Statistical. Uses of packet load independent pa-
rameters such as size, time between arrivals and
packet flow duration. This method has broader
application than other methods which require ac-
cess to the payload of the packet, since in certain
scenarios access to the payload is restricted.

• Pattern matching. Based on Deep Packet Inspec-
tion (DPI), which is recurrent in both traffic clas-
sification and implementation of NIDS. In this
sense, it is possible to compare the contents of
packages with a pre-assembled rule set.

• Protocol Decoding. Based on session state re-
construction and application information obtained
from package contents. Protocol identification
is based on protocol header characteristics and
packet sequences.

In the context of OpenStack management network
it’s possible to deploy a port-based approach, since
the OpenStack environment allows it. It comprises
all administrative traffic and may separate traffic from
some services into VLANs or network interfaces. By
default, on minimal installation, all this traffic is on
a single VLAN or NIC. Since management network
is a core network in OpenStack infrastructure, we’re
working on a very specific scenario in which the ser-
vices must be related to OpenStack operation, so there
are no worries about protocols using cryptography
and services have well defined ports.

We adopted an Active measurement of the con-
sumer operations on a VM instance. Since we found
no information to serve as a baseline for operations
on VM instances, we chose the Active approach and
defined the sequence of operations. This sequence of
operations performed by a consumer in the state of the



VM is called: induced VM lifecycle. OpenStack has a
total of 12 possible states in which a VM instance can
assume (OpenStack, 2018b). However, by analyzing
the operations of our user on our private OpenStack
cloud, we find out the vast majority of our users typi-
cally have their VMs in only 6 states (Figure 5).

INITIALIZED

ACTIVE

STOPPED

SUSPENDED

SHELVEDSHELVED_OFFLOADED

1.CREATE()
2.SUSPEND()

3.RESUME()

4.STOP()

5.SHELVE()

Figure 5: Induced VM lifecycle.
For each state change we collect traffic to iden-

tify the amount of data transmitted, the elapsed op-
eration time, and the number of API calls. This data
is collected by OpenStack Services, and the External
Services. This data is used to perform our traffic char-
acterization.

5 Testbed, Experiments & Results

We used CloudLab (http://cloudlab.us)
testbed for deploying OpenStack release Queens.
CloudLab allows servers to be allocated to one of
their top three clusters, Utah, Clemsom, or Wiscon-
sin. On average, each server has 256GB of memory
and two 2.4Ghz processors each, totaling 16 cores.
We use the flavor m1.small - 1vCPU, 2 GB RAM
and 20GB disk storage. It is also possible to choose
network between 1Gb/s and 10Gb/s, we use 1Gb/s.

The two nodes topology (Figure 6) was adopted
since it was enough to configure the networks as well
identify the communication between nodes. We col-
lected a traffic measurement from controller server
by collecting traffic from management network inter-
face (VLAN1, Figure 6) and loopback interface, since
there are services running in the Controller Node.

Controller Node

SQLDB AMQP

External Services

KEYSTONE HORIZON

NEUTRON GLANCE

NOVA-API NOVA-
SCHEDULER

OpenStack Services

Network Interface Card

VLAN1 - Management

VLAN2 - Guest / Public

VLAN1 - Management

VLAN2 - Guest / Public

Compute Node

NEUTRON-PLUGIN-AGENT

NOVA-COMPUTE

Network Interface Card

OpenStack Services OpenStack Services

AMQP

External Services

Figure 6: CloudLab testbed setup.

We developed a tool for the automation of ex-
periments. Packet capture was implemented with a
tool developed in Python which uses of OpenStack

APIs (especially the novaclient). This tool is used
to capture packets using TCPdump, perform state
change operations on VM instance, and measure the
elapsed time for each operation. In order to avoid
use of cached information, after a experiment the en-
tire cloud is terminated and a new one is created for
the next experiment (Clean-slate approach). Each ex-
periment was run 10 times, deviation was below 2%.
ETC category in tables represents External Services
and most of this is composed of RabbitMQ traffic.

We performed experiments using eight different
operating system (OS) images for instances of VMs,
but due to paper limit of pages we are showing the
results only for the most usual images:

1. GNU/Linux Fedora Cloud: version 30-1.2, 319
MB, and QCOW2 image file format;

2. GNU/Linux Ubuntu Server: version 18.04 LTS,
329 MB, and QCOW2 image file format; and

3. MS-Windows Server: version 2012 R2, 6150
MB, and QCOW2.GZ image file format.

Figure 7 shows the experiment timeline for
GNU/Linux Fedora Cloud 30-1.2 OS image.

Operation Elapsed time
 (seconds)

Total Traffic
 (MB)

CREATE 21 337.964

SUSPEND 5 2.192

RESUME 1 1.425

STOP 2 1.890

SHELVE 24 988.089

Figure 7: GNU/Linux Fedora Cloud 30-1.2 OS image.

Tables 2 and 3 show measured traffic classified by
service and API calls respectively. It is possible to in-
fer from Figure 7: measured traffic increases between
seconds 2 and 4, during CREATE operation. The to-
tal traffic between seconds 2 and 4 sums up to around
to 334 MB. Table 2 shows Glance is responsible for
333 MB during CREATE operation. Thus, this peak
represents the OS image transfer. Same behavior hap-
pens to SHELVE operation. It’s possible to infer a
peak between seconds 51 and 56, totaling 919 MB of
networking traffic. According to Table 2, Glance is
responsible for 983 MB. Thus, this peak means the
snapshot transfer through the network.



Table 2: Measured traffic in management and loopback in-
terface for GNU/Linux Fedora Cloud 30-1.2 (MB).

Glance Nova Keystone Neutron ETC Total
CREATE 333.0054 0.00552 0.059566 0.03646 4.857366 337.9643
SUSPEND 0.000208 0.001823 0.001036 0.000208 2.188956 2.192231
RESUME 0 0.001169 0 0.007437 1.416463 1.425069

STOP 0 0.00117 0.011781 0 1.877207 1.890158
SHELVE 983.0146 0.00207 0.035559 0.011514 5.025322 988.0891

Table 3: API calls by service - GNU/Linux Fedora Cloud
30-1.2 .

Glance Nova Keystone Neutron Total
CREATE 1 3 5 15 24
SUSPEND 0 0 0 0 0
RESUME 0 0 0 2 2

STOP 0 0 0 0 0
SHELVE 12 0 3 10 25

Figure 8 shows the experiment timeline for
GNU/Linux Ubuntu Server 18.04 LTS OS image.

Operation Elapsed time
(seconds)

Total Traffic 
(MB)

CREATE 19 357.605
SUSPEND 5 3.683
RESUME 1 1.828

STOP 6 4.041
SHELVE 28 1118.964

Figure 8: GNU/Linux Ubuntu Server 18.04 LTS.

Tables 4 and 5 show measured traffic classified by
service and API calls respectively. CREATE opera-
tion registered a peak at second 2. Measured traffic at
second 2 is around to 290 MB. On second 3 measured
traffic is 57 MB. In the other hand, during SHELVE
operation measured traffic from second 54 to 57 is
higher than the rest in the operation. Measured traf-
fic from second 54 to 57 is around to 1105 MB. Both
peaks, from CREATE and SHELVE operations, are
due to the image and snapshot transfer, respectively.
Since Table 4 shows that Glance is responsible for
most networking traffic during these operations.

Table 4: Network traffic (MB): management and loopback
interface - GNU/Linux Ubuntu Server 18.04 LTS (MB).

Glance Nova Keystone Neutron ETC Total
CREATE 344.1754 0.003027 0.057792 0.035739 13.33273 357.6047
SUSPEND 0.000208 0.00117 0.011826 0.000104 3.669552 3.68286
RESUME 0 0.001169 0 0.005117 1.821232 1.827518

STOP 0 0.00117 0.011937 0.000104 4.028234 4.041445
SHELVE 1102.15 0.001377 0.011982 0.014614 16.78581 1118.964

Table 5: API calls by service - GNU/Linux Ubuntu Server
18.04 LTS.

Glance Nova Keystone Neutron Total
CREATE 1 2 3 15 21
SUSPEND 0 0 0 0 0
RESUME 0 0 0 0 0

STOP 0 0 0 0 0
SHELVE 8 1 1 10 20

Figure 9 shows the experiment timeline for MS-
Windows Server 2012 R2 OS image.

Operation Elapsed time
(seconds)

Total Traffic
(MB)

CREATE 87 6648.902
SUSPEND 1 1.247
RESUME 1 1.512

STOP 60 22.352
SHELVE 71 6649.295

Figure 9: Results using MS-Windows Server 2012 R2.

Tables 6 and 7 show measured traffic classified
by service and API calls respectively. Similarly the
other experiments, CREATE and SHELVE operations
take longer to execute and they produce more traffic
than the others. CREATE operation produces around
to 6600 MB of which 6500 MB are measured be-
tween second 8 and 43. SHELVE operation produces
around to 6600 MB as well and the period between
162 and 202 seconds is responsible for 6400 MB. Ta-
ble 6 shows Glance is once again responsible for most
of the measured traffic in CREATE and SHELVE.

Table 6: Measured traffic in management and loopback in-
terface for MS-Windows Server 2012 R2 (MB).

Glance Nova Keystone Neutron ETC Total
CREATE 6615.86 0.004698 0.035729 0.030551 32.97104 6648.902
SUSPEND 0 0.000507 0 0 1.246532 1.247039
RESUME 0.000104 0 0 0.007438 1.504655 1.512197

STOP 0.00052 0.002282 0.013943 0.007958 22.32741 22.35211
SHELVE 6619.848 0.003573 0.035414 0.0155 29.39219 6649.295

Table 7: API calls by service - MS-Windows Server 2012.
Glance Nova Keystone Neutron Total

CREATE 1 3 3 13 20
SUSPEND 0 0 0 0 0
RESUME 0 0 0 0 0

STOP 0 1 1 5 7
SHELVE 8 2 2 10 22

Regarding to the API calls, all the experiments
show Neutron and Glance have the highest numbers
of calls (Tables 3, 5 and 7). Most times there are
not so many API calls during SUSPEND and RE-
SUME operations. In fact, SUSPEND and RESUME
operations are similar to suspending and reactivating



Table 8: Management traffic per operation.

Operating System Image size
(MB)

SUSPEND
(MB)

RESUME
(MB) STOP (MB)

CREATE
minus Image
size (MB)

SHELVE
minus Image
size (MB)

GNU/Linux Fedora Cloud 30-
1.2 319 2.192231 1.425069 1.890158 18.96427 669.08910

GNU/Linux Ubuntu Server
18.04 329 3.68286 1.827518 4.041445 28.60469 789.96375

MS-Windows Server 2012 R2 6150 1.247039 1.512197 22.35211 148.9015 149.2949

Table 9: Elapsed time for each operation (seconds).
Elapsed time (seconds)

Operating System CREATE SUSPEND RESUME STOP SHELVE
Fedora Cloud 30-1.2 21 5 1 2 24
GNU/Linux Ubuntu Server
18.04 19 5 1 6 28

MS-Windows Server 2012 R2 87 1 1 60 71

a physical machine. Thus, there’s no need for many
API calls, since it can be done straight by the hyper-
visor in the Compute Node. The same can be applied
to STOP operation, which means the machine will be
turned off.

6 Analysis

SUSPEND, RESUME, and STOP operations pro-
duce linear networking traffic (Table 8). The two
columns on the left show how much network traffic
was used when subtracted the size of the image you
use. We have identified an increase when we were ac-
tually expecting a constant value because the image
should only be left with API call traffic. We define it
as future work to analyze whether part of this surplus
could be due to TCP acknowledgments or related to
the amount of API calls (Table 9).

We find out the number of instances being created
or shelved at one time can easily clog up the Open-
Stack management network using a minimal setup
(Figure 3). If there are OpenStack projects launch-
ing or shelving more than 10 VM instances of Ubuntu
Server at a same time on a 1Gb/s network (which is
not a significant number) this may cause performance
degradation in all OpenStack administrative services
(including user access to other storage services such
as Swift and Cinder). Thus, the topology of Figure 4
should be adopted keeping in mind it will not solve
the slow problem but at least will not affect the ex-
ecution of other OpenStack services. The problem
will only can be solved allocating right network band-
width to support the amount of desired VM launching
or shelving.

SUSPEND, RESUME, and STOP operations do
not depend on the OS image, so the networking traffic
is highly related to how long the operation took to
execute (Table 9).

7 Considerations & Future work

The experiments suggest a common behavior for
all operations. SUSPEND, RESUME, and STOP op-
erations show a constant management network traffic
while CREATE and SHELVE network traffic depend
on the OS image size.

OpenStack is a distributed system, so its operation
is complex, and there are several asynchronous re-
quests among its services/modules. In fact, in Open-
Stack setups RabbitMQ is the most important tool
for dealing with those asynchronous requests. Rab-
bitMQ message broker implements Advanced Mes-
sage Queuing Protocol (AMQP) for managing queues
of Remote Procedure Calls (RPCs). The ETC cat-
egory showed in each networking traffic table (Ta-
bles 2, 4, and 6) contains RabbitMQ traffic which
should be analyzed using a flow based approach
(since there are no source and destination ports to be
evaluated).

Our future work are focused on creating a base-
line traffic which considers management traffic only
per operation (it excludes the image transfer network
traffic). Moreover, we intend to verify a linear regres-
sion model application so it would be possible to pre-
dict the networking traffic amount generated per op-
eration and could be useful for networking resource
management (e.g., bandwidth allocation).

ACKNOWLEDGEMENTS

The authors would like to thank the support of
Fundação de Amparo à Pesquisa e Inovação do Es-
tado de Santa Catarina (FAPESC), Laboratório de
Processamento Paralelo Distribuı́do (LabP2D) / Uni-
versidade do Estado de Santa Catarina (UDESC), and
CloudLab.



References

Aishwarya. K, & Sankar, S. (2015, March). Traf-
fic analysis using hadoop cloud. In 2015 in-
ternational conference on innovations in infor-
mation, embedded and communication systems
(iciiecs) (p. 1-6). doi: 10.1109/ICIIECS.2015
.7192872

Alenezi, M., Almustafa, K., & Meerja, K. A. (2019).
Cloud based sdn and nfv architectures for iot
infrastructure. Egyptian Informatics Journal,
20(1), 1 - 10. Retrieved from http://
www.sciencedirect.com/science/
article/pii/S1110866517303523 doi:
https://doi.org/10.1016/j.eij.2018.03.004

Bruneo, D. (2014, March). A stochastic model to
investigate data center performance and qos in
iaas cloud computing systems. IEEE Trans-
actions on Parallel and Distributed Systems,
25(3), 560-569. doi: 10.1109/TPDS.2013.67

Chaudhary, R., Aujla, G. S., Kumar, N., & Ro-
drigues, J. J. P. C. (2018, Feb). Optimized big
data management across multi-cloud data cen-
ters: Software-defined-network-based analysis.
IEEE Communications Magazine, 56(2), 118-
126. doi: 10.1109/MCOM.2018.1700211

Dainotti, A., Pescape, A., & Claffy, K. C. (2012,
January). Issues and future directions in traf-
fic classification. IEEE Network, 26(1), 35-40.

Dainotti, A., Pescape, A., & Ventre, G. (2006, June).
A packet-level characterization of network traf-
fic. In 2006 11th international workshop on
computer-aided modeling, analysis and design
of communication links and networks (p. 38-
45). doi: 10.1109/CAMAD.2006.1649716

Finsterbusch, M., Richter, C., Rocha, E., Muller,
J., & Hanssgen, K. (2014, Second). A sur-
vey of payload-based traffic classification ap-
proaches. IEEE Communications Surveys Tu-
torials, 16(2), 1135-1156. doi: 10.1109/SURV
.2013.100613.00161

Flittner, M., & Bauer, R. (2017, May). Trex: Tenant-
driven network traffic extraction for sdn-based
cloud environments. In 2017 fourth inter-
national conference on software defined sys-
tems (sds) (p. 48-53). doi: 10.1109/SDS.2017
.7939140

Gustamas, R. G., & Shidik, G. F. (2017, Oct).
Analysis of network infrastructure performance
on cloud computing. In 2017 interna-
tional seminar on application for technology
of information and communication (isemantic)

(p. 169-174). doi: 10.1109/ISEMANTIC.2017
.8251864

Jadeja, Y., & Modi, K. (2012, March). Cloud com-
puting - concepts, architecture and challenges.
In 2012 international conference on comput-
ing, electronics and electrical technologies (ic-
ceet) (p. 877-880). doi: 10.1109/ICCEET.2012
.6203873

OpenStack. (2018a). 2018 openstack user sur-
vey report. Retrieved from https://
www.openstack.org/user-survey/
2018-user-survey-report/

OpenStack. (2018b). Provision an instance. Re-
trieved from https://docs.openstack.org/
operations-guide/ops-customize
-provision-instance.html

OpenStack. (2019a). Networking archi-
tecture. Retrieved from https://
docs.openstack.org/security-guide/
networking/architecture.html

OpenStack. (2019b). Openstack documentation. Re-
trieved from https://docs.openstack.org

OpenStack. (2019c). What is openstack? Re-
trieved from https://www.openstack.org/
software

Sankari, S., Varalakshmi, P., & Divya, B. (2015,
Feb). Network traffic analysis of cloud data
centre. In 2015 international conference on
computing and communications technologies
(iccct) (p. 408-413). doi: 10.1109/ICCCT2
.2015.7292785

Sciammarella, T., Couto, R. S., Rubinstein, M. G.,
Campista, M. E. M., & Costa, L. H. M. K.
(2016, Oct). Analysis of control traffic in a
geo-distributed collaborative cloud. In 2016
5th ieee international conference on cloud net-
working (cloudnet) (p. 224-229). doi: 10.1109/
CloudNet.2016.14

Shete, S., & Dongre, N. (2017, June). Analysis
amp; auditing of network traffic in cloud envi-
ronment. In 2017 international conference on
intelligent computing and control systems (ici-
ccs) (p. 97-100).

Venzano, D., & Michiardi, P. (2013). A measurement
study of data-intensive network traffic patterns
in a private cloud. In Proceedings of the 2013
ieee/acm 6th international conference on utility
and cloud computing (pp. 476–481). Washing-
ton, DC, USA: IEEE Computer Society.

Williamson, C. (2001, Nov). Internet traffic measure-
ment. IEEE Internet Computing, 5(6), 70-74.
doi: 10.1109/4236.968834


