Comparative experimental analysis of Docker
container networking drivers

Lucas Litter Mentz, Wilton Jaciel Loch, Guilherme Piégas Koslovski
Graduate Program in Applied Computing (PPGCA) — Santa Catarina State University (UDESC) — Joinville, Brazil
{lucas.mentz, wilton.loch}@edu.udesc.br, guilherme.koslovski@udesc.br

Abstract—Virtualization allows for more efficient hardware
usage by allowing several instances of Operating Systems (OSs) or
Virtual Machines (VMs) to run on a physical server. Containers
are a subset of lightweight virtualization and reduce the overhead
of virtualizing an entire OS by sharing the server’s OS with
the virtualized instances. Moreover, containers work closer to
hardware than VMs and are similar to Linux processes, however,
this limits connectivity freedom since processes do not have access
to network addressing. To resemble container’s communication
to that of conventional networks we use network drivers. Studies
show that in processing- or memory-bound scenarios, containers
perform better than VMs, but in network-bound scenarios they
achieve less performance. This work analyzes performance of
networking implementations for Docker in different container
allocations and workload scenarios.

Index Terms—Cloud networking, Docker, containers, experi-
mental, drivers

I. INTRODUCTION

The search for greater hardware utilization on data centers
has advanced with the use of technologies to execute several
guest environments on a single server. Hardware virtualization
better leverages physical resources by allowing multiple OSs
to run logically isolated over an hypervisor — minimal OS
destined to provide the needed VM hosting functionalities [1].
However, virtualization also implies on additional processing
overhead and memory usage, since each VM runs a complete
OS [2]. Lightweight virtualization deals with this problem by
substituting the guest OS by an isolated environment that runs
as a process on the host machine [3].

Containers are a form of lightweight virtualization that
works by partitioning the host OS on logically isolated en-
vironments. Since the containers share the OS with the host
machine instead of running individual complete instances,
there is a reduction on processing overhead and both memory
and disk usage when compared with VMs. Containers are
utilized by tech giants like Google [4] and pave Container as a
Service (CaaS) services like Amazon AWS Elastic Container
Service. Among popular container implementations Docker [5]
was chosen for this study for being a widely used platform.

One of the main differences between VMs and containers
relates to the communication network. The hypervisor pro-
vides to each VM a virtual interface, which to the guest system

This work was supported by FAPESC, LabP2D/UDESC, CAPES, and
CloudLab.

978-1-7281-9486-8/20/$31.00 (©2020 IEEE

works as a real network interface, while container commu-
nication needs more ingenious solutions since a container is
analogous to a Linux process and therefore does not receive
an individual address on the network, although it can create
communication sockets. To approximate the functioning of
container networks to regular ones, solutions named network
drivers have been proposed, which abstract container networks
to provide different forms of connectivity. Docker has as
default five network drivers: none, host, bridge, macvlian and
overlay [6]. With the extra functionality added to the container
network comes processing overhead and as each Docker driver
has a different behaviour related to the involved processes, the
expected overhead is proportional to the process’s complexity.

Related work presents performance reduction on container
networks over executing the same tests on the host itself
[1], [2]. Due to the large utilization of containers and the
observed communication performance degradation, this work
aims at experimentally identifying the additional load required
by Docker container networks and its impacts. The tests also
indicate the differences that allow selecting one network driver
that objectively stands out on performance according to the
studied metrics, independent from the utilization scenario.
Specifically, the goal of this work is the empirical analysis of
communication network’s performance on Docker containers.
We provide experimental results to guide the selection of
an appropriate Docker network driver given a predefined
allocation of containers. In addition to performing analyses
based on synthetic flows (as used by specialized literature,
Section II-C), we applied flow distributions based on DC
reports (Section II-B).

Our experimental methodology comprises four representa-
tive workload scenarios (reference, interference, congestion
and Data Center (DC) simulation) executed atop multiple
containers allocations. Besides network performance indica-
tors (throughput, latency, and Flow Completion Time (FCT)),
the CPU metric is used to observe the impact of a CPU-
intensive load on network metrics as well as the processing
consumption of each driver. Results indicate that, in general,
drivers with simpler implementation but more complex usage
show better results than complex drivers with easier usage. In
real-world traffic simulations we observe run times up to 20%
longer using Docker overlay than with simpler drivers, and
synthetic workloads show a staggering 95% slower achievable
bandwidth with the overlay solution on some cases.

This paper is organized as follows. Section II presents the

literature review, motivation, and related work. The experi-
mental methodology is described in Section III, while results
are discussed in Section IV. Section V concludes the work.

II. LITERATURE REVIEW AND MOTIVATION

The Docker container networking is revised (Section II-A),
as well as the key observations from multitenant DCs (Sec-
tion II-B). Finally, the related work (Section II-C) summarizes
the discussions from experimental analysis performed with
Docker-based containers.

A. Docker Container Networking

As containers are analogous to processes, whose network
capabilities are limited to sockets, there is the need to imple-
ment different forms of communication so that containers can
communicate on a network as if they were regular hosts. These
implementations are called network drivers and provide from
basic connectivity, by associating the container to a virtual
bridge, to scalable solutions of overlay networks comprising
service discovery, load balancing and name resolution service.

The network drivers included on the Docker default in-
stallation are [6]: None, which does not provide network
communication to containers. Host, which represents the com-
munication through sockets, where each container holds one
or more server ports directed to itself. Bridge, which creates a
virtual bridge to connect the containers to valid IP addresses
on a private subnet with local scope. Macvlan, which connects
the containers to the external network and provides valid MAC
(Media Access Control) addresses to them, similarly to how
hardware virtualization handles networking. The containers’ IP
address is chosen by Docker in a subnet defined by the user
upon network creation. Any device reachable in the defined
VLAN can communicate with the containers on it. Overlay,
which creates an overlay network that allows containers to
communicate even if located on different hosts. Optionally,
all the traffic of the overlay can be encrypted.

A representation of a possible container communication is
presented on Figure 1. Container #1 has connectivity using the
drivers macvian and bridge, being accessible both externally,
through VLAN 10 on the external network, and internally
by Container #2 with which it shares the bridge connection.
Container #2 is also connected to a Docker overlay network,
which allows it to access containers hosted in other servers,
such as Container #4. Container #3 uses only the driver host,
exposing its port 5000 on the IP address of Server #2.

For the analysis we selected only the Docker network
drivers that provide networking: host, bridge, macvlan and
overlay. The four drivers can be used to create a service
spanning one or more Docker nodes, however applying a
driver that is not recommended for a certain allocation scenario
generates performance loss, isolation reduction, additional
configuration or greater usage complexity.

B. Cloud DC Network Load

In order to perform experiments with reasonable representa-
tion of a DC scenario, it is necessary to understand the behav-
ior of a DC network, which according to [7] present workloads

Server #1 Server #2

Container #1 Container #2 Container #3 Container #4

linux bridge

Docker Overlay

Docker Overlay

external network

Fig. 1: Docker network configurations example.

that are directly dependent on the executed applications. The
analysis of communication networks is conventionally done
by observing and identifying the transferred packets, which
provides information granularity proportional to the sampling
rate and allow abstractions to more high level semantic struc-
tures like flows, for example. A flow is a TCP/IP structure
that comprises a set of packets containing the same values for
origin IP, origin port, destination IP and destination port, being
represented by a tuple with these values [8].

Data Centers have much higher internal than external traffic
— entering or leaving the DC — load due to the distributed
services that are executed on them. For instance, upon a
search on a search engine the external traffic to and from the
DC is composed only by the request and the reply with the
final results page, however, internally several services work
to aggregate the indexed content and select the proper data
to build the page. [9] estimates that the traffic inside a DC
represents more than 3 times the traffic entering or leaving it.

Specifically, [8] analyzed the traffic of a 1500 server DC
network and highlighted the following traffic characteristics:
(i) 50% of the flows last less than 100 milliseconds; (ii) 80%
of the flows last 10 seconds or less; (iii) virtually no flow
surpasses 100 seconds; and (iv) about 50% of all the traffic
is composed of flows of 25 seconds or less. The work of
[10] analyses 10 DC spanning commercial clouds, private
companies’ DCs and educational institutions. In summary the
study shows that 40% of the flows have less than 1 KB, 80%
have less than 10 KB and almost all flows fall below 10 MB;
the flow tail duration was 200 seconds with median varying
between 0.5 milliseconds and 1 second [7], [10].

Finally, [11] analyses the traffic of Hadoop, Caches and
Web Servers of a Facebook DC regarding flow duration, traffic
volume, among other measures. This work shows median flow
durations varying from 1 millisecond for Hadoop intra-rack
traffic to 300 seconds for Web Servers inter-rack traffic, and
median flow volume from 500 bytes to 100 KB. The articles
converge in the characterization of the traffic as being mostly
composed of low volume flows, generally with only tens of
KBs of transferred size, while the occasional transfers of high
volume flows are the exception. Moreover, services that tend
to be more outward-facing like web servers have higher flow
duration than more processing-oriented traffic such as reported

by [8]. This information is fundamental to compose the traffic
workloads used in Section III-A.

C. Related Work

The work of [1] compares the performance between VMs
and containers, addressing CPU, memory, disk and connec-
tivity indicators. Specifically for TCP-based tests, Docker
containers achieved results virtually identical to the native
configuration for unidirectional flows, while it presents 19%
overhead for an incremental service request scenario. [12]
evaluates network bandwidth between VM with KVM and
containers with Docker and LXD on intra-server, intra-cloud
and inter-cloud scenarios. For the intra-server scenario Docker
containers outperformed KVM and LXD one hundred-fold,
while on intra- and inter-cloud configurations Docker achieved
a less pronounced advantage of around 30%. In turn, [13]
quantifies the performance of Docker-based microservices. In
addition to the standard Docker network drivers, the authors
apply Software-Defined Networking (SDN) and encryption
to route and isolate, respectively, TCP flows between the
microservices highlighting that the degradation of network
performance with containers is not negligible.

Docker overlay network drivers were investigated in [14].
For long-distance networks, the authors observed a reduction
in performance when the CPU is loaded, and according to the
packet size. Also, for multi-hop configurations, a predictable
growth in latency was observed. The work of [2] discussed
experiments with container networks running on VMs. Results
vary from close to the native VM traffic rate to a reduction up
to 1/4 of the total bandwidth, with latency depending more
on the use case of containers (internal load).

The related work covers a collection of Docker network
drivers and scenarios with different performance measures. We
observe interest in using overlay networks. Despite imposing
a reduction in performance, overlays deliver flexible connec-
tivity in scenarios with multiple hosts. This present work
deepens the discussion on Docker network performance by
composing different container allocation scenarios combined
with reproduction of DCs traffic patterns.

III. EXPERIMENTAL METHODOLOGY

The experimental methodology comprises four TCP-based
workload configurations and four container allocation scenar-
ios (Section III-A). The experiments were performed on two
private experimental clouds (Section III-B).

A. Workload and Allocation Scenarios

The experimental workload is organized in 4 configurations
termed reference, interference, congestion and DC simulation.
The reference workload identifies the best-case bandwidth
(accounted with iperf3 [15]) and latency (measured with
SockPerf [16]) for 2 communicating containers. Interference
measures the effect of a stressed CPU on previous scenario:
a CPU-intensive container (based on stress-ng [17]) is in-
troduced to stress the environment pointing out the impact
on reference bandwidth and latency values. The congestion

workload uses 2 pairs of containers to represent background
and foreground traffics. The background traffic stresses the
network with iperf3 while the foreground assesses the drivers’
ability to promote fairness in congested networks.

DC simulation workload is based on Section II-B. The
Empirical Traffic Generator [18] is used to simulate traffic
to one container (client) from three containers (servers) ex-
ecuted on 3 allocations: same VM, same server, and same
rack. Empirical Traffic Generator (ETG) can reproduce traffic
following a specified flow size distribution. For DC simulation
we replicated data from distribution PRV2; from [10]: 20%
of flows are under 100 Bytes; 40% under 450 Bytes; 50%
under 900 Bytes; 60% fall below 1400 Bytes; 70% under 2200
Bytes; 80% are lower than 4500 Bytes; 90% under 20 KBytes;
95% under 100 KB; 99% are below 1.5 MB with the largest
flow reaching 2.2 MB. To deepen the analysis, two workload
configurations were used for DC simulation, termed standard
(1 Gbps load and 250, 000 flows) and heavy (3 Gbps load with
500,000 flows) configurations.

The four workloads are executed on distinct allocations of
physical servers to host containers. The rationale behind this
approach is to investigate the performance of Docker network
drivers when communicating through switches or internally
on servers. We argue that the results can assist users on
choosing the driver based on the intended container placement.
For Allocations 1, 2, and 3, the reference, interference and
congestion workloads are executed, while DC simulation is
applied for Allocation 4. Allocation 1’s performance is limited
by the loopback network interface of the VM that hosts the
containers, while on Allocation 2 the limit is defined by the
configuration and performance of the hypervisor. The third
allocation represents the communication between servers in
the same rack through a gigabit switch. The Allocation 4
denotes a union of the other three allocations to simulate a DC
in which the distribution of containers can lead to situations
where a container communicates with co-hosted containers
and also distant containers. The experimental allocation sce-
narios are summarized by Figure 2. The studied traffic is
shown as the green lines between containers while orange lines
denote background traffic for congestion workload and the
orange container runs the CPU load on interference workload.
Each experiment was repeated 20 times, and the results are
presented as throughput, latency, CPU load, and FCT metrics.

B. Experimental Clouds

The experiments were executed on two private clouds, Tche
cloud and CloudLab [19], managed by OpenStack [20]. For
Tche cloud, the two compute nodes are equipped each with
two Intel® Xeon® E5 — 2620 v2, 12 cores per server, 192
GB and 160 GB RAM, 500 GB HDD storage, while CloudLab
offers HPE Proliant XL170r servers composed of Intel®)
Xeon® E5 — 2640 v4 with 10 cores, 64 GB RAM, and 480
GB SSD storage each. For both infrastructures, the physical
network between servers was configured to 1 Gbps. Specifi-
cally for CloudLab, macvilan driver cannot be used because
CloudLab provisions networking for experiments allowing

Physical Server #1 Physical Server #1

T
£ Host

Physical Server #2

VM #4 H

Docker #4 Docker #2
2nd Server 1st Server

VM #3

Docker #3
CPU load and
2nd Client

Docker #4

3rd Server

(c) Allocation 3.

(d) Allocation 4.

Fig. 2: Experimental allocation scenarios.

only some specific Virtual Local Area Network (VLAN) tags
to flow through. In both physical clouds, VMs had 2 GB
RAM, 2 vCPUs and 40 GB storage, executing Ubuntu Server
18.04.2 LTS. All synthetic workloads (reference, interference,
and congestion) were executed atop Tche cloud, while DC
simulation was performed on CloudLab.

IV. RESULTS AND DISCUSSION

The results discussions follow the workload order: refer-
ence, interference, congestion, and DC simulation, presented
in Sections IV-A, IV-B, IV-C, and IV-D, respectively.

A. Reference Workload

Figure 3 presents the plots with the results of the reference
workload tests with all allocations. On Allocation 1 we observe
a highly divergent performance with host and macvlan having
better results than overlay and bridge. Interestingly, overlay
has a higher throughput than bridge, even though it uses a
virtual bridge for local communication and therefore expected
a similar result to Docker bridge. Figure 3(b) presents the
distribution of latency results. These results show repetition
of the bridge driver on the last position, with the highest
observed latency, and again host with the best performance.
These results corroborate with the expectation that drivers
with simpler implementation would have better performance,
with the exception being bridge having the worst result. With
respect to the use of processing (Figure 6(a)), we notice that
the biggest portion of work for all the drivers is dedicated to
system processes, suggesting that the drivers benefit from the
performance assurances promoted by the kernel space instead
of the user space.

For Allocation 2 (Figures 3(c) and 3(d)), the first obser-
vation is the low performance of overlay, reaching a mean
throughput of only 437 Mbps while the other drivers reached
around 10 Gbps. For obtaining such a distant result from the
other drivers, the tests of this scenario with the overlay driver
were repeated on the CloudLab infrastructure and labeled

1.0 1.0
08 [Host / / 08
VM #1 VM #1 VM #2 : Bridge // : Bridge
Docker #1 Docker #2 — — w 0.6 1 [Macvlan // uw 0.6 [Macylan
ocker ocker ocker ocker
Client =] Server Client [E] Server O .4 == Overlay. O o4 [Overlay
[Overlay* [Qverlay*
/4 L
Docker #3 Docker #4 VM #3 VM #4 0.0 T T T T 0.0 T T T T T
CPUloadand |— 2nd Server 10000 15000 20000 25000 30000 50 100 150 200 250
2nd Client Docker #3 Docker #4 Throughput (Mbps) Latency (us)
CPUloadand [==——oA 2nd Server
2nd Client . .
(a) Allocation 1 - throughput. (b) Allocation 1 - latency.
107 1.0 ™ T
. . [Host 1 Host
(a) Allocation 1. (b) Allocation 2. 0.8 Bridge 038 Bridbe
- 0.6 1 [Macvlan uw 0.6 [Macvlan
f f Physical Server #1 &
Physical Server #1 Physical Server #2 VM #2 804 1 Overlay 8 o4 1 Overlay
VM #1 VM #2 M #1 Docker #3 1 =3 overlay* ’ 1 Overlay*
2nd Se 0.2 0.2
Docker #1 Docker #2 Pocieiidl e sener H J| | | I
Client Server Clels 0.0 L+ v v v T T 0.0 T T T T T !
0 2500 5000 7500 100001250015000 200 300 400 500 600 700

Throughput (Mbps) Latency (us)

(d) Allocation 2 - latency.

(c) Allocation 2 - throughput.
1.0

1.0
[Host [Host
08 Bfidge 081 Eride
w 0.6{ [Macvlan w 0.6 [Macvlan
8 0.4 [—1/Overlay S 044 [Overlay
| 1 overlay* : 1| Overlay*
0.2 / 0.2

0.0 0.0+

400 500 600 700 800 900 200 400 600 800 1000
Throughput (Mbps) Latency (us)

(e) Allocation 3 - throughput. (f) Allocation 3 - latency.

Fig. 3: Results for reference workload.

overlay*. We highlight the discrepancy between the results
of this driver executed on Tche cloud and on CloudLab,
with the latter reaching numbers up to four times higher,
however these results are similar in the aspect that they
are still a lot smaller than the results of other drivers on
the same test, and this difference could be attributed to the
servers on CloudLab having a more modern architecture, with
faster processors and memory than the ones used on Tche
cloud. The repetition of the behavior of massive throughput
reduction on Allocation 2 with overlay* leads us to believe
that it is because of the limitations imposed by the Docker
overlay driver implementation, however we have not identified
any specifics that explain the performance loss. As the CPU
utilization of overlay has also diminished close to the numbers
observed on Allocation 3, we suggest the source of throughput
reduction might be programmed instead of being processing
capacity limitations.

Another observation is the slight reduction on the perfor-
mance of the bridge driver, accompanied by an unusually large
portion of the CPU usage dedicated to software interrupts,
compared to other drivers. On the latency test, presented by the
plot on Figure 3(d), it is interesting to notice that overlay does
not present the same level of performance degradation as was
seen on the throughput test, although it was an average of 13%
higher. This slightly larger latency is expected, considering
the additional processing required by the encapsulation and
encryption provided by the driver. Still on this test we observe
that bridge driver had better results, close to the host and
macvlan, agreeing with the initial hypothesis that its less
complex implementation would imply on better performance.

Figures 3(e) and 3(f) present the results from Allocation 3.
In the bandwidth test we can once again observe that the re-
sults of overlay are far below the other drivers. The comparison

between these numbers and the ones from Allocation 2 show
that the results are quite similar, reinforcing the suspicion that
the implementation is responsible for the lower performance.
In the latency test it is possible to see the same image of
Allocation 2, with host, bridge and macvlan drivers achieving
similar values and overlay reaching numbers from 10% to
13% worse. For all drivers on this Allocation there was little
CPU usage, with the biggest part being dedicated to software
interrupts and system operations.

B. Interference Workload

The second scenario, interference, adds a container in the
same host of the client container on the tests. Figure 4
highlights the results for all allocations. For Allocation 1, the
first observation is the reduction in the mean throughput on
all the drivers compared to the reference scenario. The host
and macvlan drivers lead in performance, followed by an 8%
slower overlay and bridge with another 8% lower numbers.
Regarding latency, the host and macvlan drivers have once
again close results and about 15% to 25% smaller latency
than the others. The processing utilization (Figure 6(b)) on
this allocation presents a significant portion dedicated to user
processes due to the execution of stress-ng for loading the
processor on another container on the same VM. Besides usr,
it is possible to identify that the soft and sys fractions follow
a similar relation, but lower overall, to that observed on the
reference scenario with Allocation 1.

1.0

1.0

T
[Host

[Host
081 Bridge 0.8 Bridge
w 0.6 4 1 Macvlap uw 0.6 [Macvlan
a a
O 044 [Overlay O o4 [Overlay,
0.24 0.2
0.0 f T T T T 0.0 T T T T u
7500 10000 12500 15000 17500 20000 0 250 500 750 1000 1250

Throughput (Mbps) Latency (us)

(a) Allocation 1 - throughput. (b) Allocation 1 - latency.
1.0 1.0

T T
[Host [Host
081 Bridge 08 Bridge
w 0.6 4 [Macvlan uw 0.6 [Macvlan
a a
O 044 [Overlay O 04 [Overlay:
0.24 0.2 |
0.0 = T T T T T T 0.0 T T T T T
0 2500 5000 7500 100001250015000 200 300 400 500 600

Throughput (Mbps) Latency (us)

(d) Allocation 2 - latency.

1.0

(c) Allocation 2 - throughput.
1.0

— T
[Host =1 Host
081 Bridge 08 Bridge
w 0.6 [Macvlan uw 0.6 [Macvlan
o
O 044 [Overlay O o4 y [Overlay,
y
0.21 / 0.2 | |
0.0 T T T T T T 0.0 T T T
400 500 600 700 800 900 400 600 800

Throughput (Mbps) Latency (us)

(e) Allocation 3 - throughput. (f) Allocation 3 - latency.

Fig. 4: Results for interference workload.

From the observed on Allocation 1 it was expected a
slight reduction on the performance with the distribution
of the containers on distinct VMs (Allocation 2), although
Figure 4(c) and 4(d) presents the opposite. It is possible to
see a higher throughput concentration than the ones from the
reference workload, and the drivers’ performance is roughly

equivalent except by overlay, which again shows results closer
to the expected from Allocation 3. On latency the results are
once again surprising, with all the drivers reaching latencies
about 10% lower than the reference scenario. The CPU usage
(Figure 6) is similar to the one seen on the reference workload
mostly because in this allocation the CPU stress container is
on a different VM than the ones used for the bandwidth tests,
thus its effect is not observed on the plot of processor usage.

For the Allocation 3 we find results slightly better than the
observed for the same allocation on the reference scenario.
The bandwidth and latency tests’ results are presented on
Figures 4(e) and 4(f). On the bandwidth test, the results are
identical to the ones from the reference workload for the host,
bridge and macvlan drivers, with a minor improvement on the
overlay mean throughput, indicating that for the assessed net-
work connection (1 Gbps) the applied CPU workload does not
affect negatively the drivers’ performance. These observations
can be partially explained by the fact that, even being on the
same physical machine, the load in two processing cores of
one VM is not enough to impact the overall capacity of the
underlying 12 core physical host to the point of suffocating
the processing capabilities of other VMs.

C. Congestion Workload

The third synthetic test scenario is congestion, whose ex-
ecution is composed of two pairs of containers where one
pair is responsible for saturating the network, while the other
executes the bandwidth and latency tests. On the first alloca-
tion (Figures 5(a) and 5(b)) it is expected for the observed
throughput to be close to half of the link’s capacity for the
foreground flow — the evaluated one, which competes with
an already existing background flow — but the actual results
show a reduction of 35% to 40% for all the drivers when
compared to the reference workload. On latency we see values
similar to the reference workload, despite the competition for
bandwidth with the background flow. It can be observed that
the best latency results are again with host and macvlan, while
overlay and bridge reach results up to 25% slower.

On Allocation 2 (Figures 5(c) and 5(d)), instigating results
are observed. For the first time there is a higher achieved
bandwidth on Allocation 2 than on Allocation 1, being the
bridge driver accountable for such result, with 14% higher
throughput. The other drivers maintain similar results to the
Allocation 1 on this workload, except the overlay which gets
slowed even further to an average of 377 Mbps. The processing
usage indicated on Figure 6(c) presents a noticeable difference
with increases of usage between 30% and 50% in respect to
the observed on Allocation 2 of reference scenario for the host,
bridge and macvlan drivers. One can conclude that between
distinct VM pairs, even being on the same physical host, there
is no significant competition. A possible explanation could be
the underutilization of the available resources on the physical
machines, since the server is equipped with 12 processing
cores and only 8 cores are utilized (4 VMs with 2 cores
each), allowing distinct and isolated work between the VMs.
The latency tests shows close values between host, bridge and

1.0 T
[Host , [Host
081 Bridge 08 Bridge
w 0.6 [Macvlan uw 0.6 [Macvlan
a
O 044 [Overlay. O o4 1 Overlay
0.24 / 0.2 |
0.0 T T T T T T 0.0 T T T
5000 7500 10000 12500 15000 17500 50 100 150 200

Throughput (Mbps) Latency (us)

(a) Allocation 1 - throughput. (b) Allocation 1 - latency.

1.0 1 1.0 T
[Host ; [Host
081 Bridge 08 Bridge
w 0.6 1 [Macvlan uw 0.6 1 |Macvlan
a a
9044 [Overlay S g4 1 Overlay
0.2 || 0.2
0.0 y T . T T 0.0 T r { r
0 2500 5000 7500 10000 12500 15000 200 300 400 500 600

Throughput (Mbps) Latency (ps)

(d) Allocation 2 - latency.

1.0

(c) Allocation 2 - throughput.
1.0

——r
[Host [Host
081 Bridge 0.8 Bridge
w 0.6 { [Macvlan w 0.6 [Macvlan
a a
S 044 [Overlay (S [Overlay:
0.24 0.2
0.0+ T T T T T 0.0 T T T T T
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000

Throughput (Mbps) Latency (ps)

(e) Allocation 3 - throughput. (f) Allocation 3 - latency.

Fig. 5: Results for congestion workload.

macvlan with overlay having 15% more latency. In comparison
with the reference workload with the same allocation scenario
we see a reduction in latency of about 18%.

The last allocation of the synthetic tests puts two flows to
compete for the 1 Gbps bandwidth between VMs hosted on
different servers. Figures 5(e) and 5(f) show the results. It
is noticeable that for the host, bridge and macvlan drivers
the obtained throughput is half of what they reached on the
same configuration of the reference scenario and half of the
allocation’s available bandwidth. With overlay, the measured
bandwidth is 66% of the achieved on the reference workload,
indicating that the total throughput was larger with two flows
than with only one on the reference scenario, although still
a worse performance than the other drivers. There were no
perceptible differences on the CPU usage of this specific test
with relation to the reference or interference workloads. The
latency test presents no similarity to the other workloads,
with a surprise being overlay having the best results. The
host, bridge, macvlan and overlay drivers had, respectively,
389%, 187%, 397% and 90% higher latencies compared to
the reference workload with Allocation 3.

D. DC Simulation Workload

This section presents the results and analysis of the Data
Center traffic simulation tests executed with the ETG tool.
Figure 7(a) presents the Flow Completion Times. The over-
lay presents better FCTs on the 20% smaller flows when
compared to the other drivers. Since these flows have very
short durations, it is suspected that they represent traffic on
the same VM or on different VMs on the same physical
machine, contrasting with the results obtained on the synthetic
tests, where the overlay obtained the worst results in both
bandwidth and latency. On the execution times, host has the

100

100

N sys [soft N usr

B sys

N soft
80

60

40

Utilization (%)
Utilization (%)

llocation 2
llocation 3

20

Allocation 3

0
host bridge macvlan overlay host bridge macvlan overlay

(a) Reference workload.
100

(b) Interference workload.

N sys I soft

80
60

Utilization (%)

llocation 2
llocation 3

)
c
2
®
o
o
I

host bridge macvlan overlay

(c) Congestion workload.

Fig. 6: CPU usage for reference, interference and congestion
workloads.

better performance followed by bridge with 5% and overlay
with 6.8% higher durations. These numbers agree with the
observations of the reference workload to which this one more
closely relates.

The heavy test (Figure 7(b)) exacerbates the discrepancy
between overlay and the other drivers. The higher requested
bandwidth results in overlay’s maximum bandwidth on differ-
ent VMs and on different physical machines being achieved
more regularly. For this reason the overlay has a 13.8% higher
test duration than bridge and 20.1% higher than host. Bridge
has a 6.2% slower execution than host.

1.0

1.0

p— T T
08 — Ho.st 08 y_‘____.»—»I:] Hu.st
Bridge Bridge
P 0.6 [Overlay w 0.6 [Overlay
Y o4 ©o04
0.2 0.2
0.0 + 0.0

10! 102 10° 104 10° 10! 102 10° 104 10°
Flow duration (ps) Flow duration (ps)

(a) Standard workload. (b) Heavy workload.

Fig. 7: Results for on DC simulation workload.

V. CONCLUSION

The containers’ communication limitations, arisen from the
Linux process alike functioning, impelled the development
of network drivers that add more traditional communication
capabilities, which also implies overhead proportional to their
complexity. This work executed an evaluation of Docker
network drivers host, bridge, macvlan and overlay on synthetic
and simulation experiments. The quantitative focused metrics
involved both common evaluation dimensions like bandwidth,
latency and CPU usage and also a rather unused one, the Flow
Completion Time. Our findings suggest that applications that
require higher bandwidth and lesser latencies steer away from
the most simple-to-use Docker overlay driver and consider us-
ing macvlan, a good compromise between host’s performance
and overlay’s ease-of-use.

[1]

[2

—

[3

—

[4]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]
[17]

(18]

[19]

[20]

REFERENCES

R. Morabito, J. Kjéillman, and M. Komu, “Hypervisors vs. lightweight
virtualization: a performance comparison,” in 2015 IEEE International
Conference on Cloud Engineering. 1EEE, 2015, pp. 386-393.

K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. 1EEE, 2018, pp. 189-197.

S. J. Vaughan-Nichols, “New approach to virtualization is a lightweight,”
Computer, vol. 39, no. 11, pp. 12-14, 2006.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

DOCKER, INC., “Enterprise container platform — docker,” aug 2019.
[Online]. Available: https://docker.com/

——, “Overview — docker documentation,” 2019. [Online]. Available:
https://docs.docker.com/network/

M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic
control: Understanding techniques and tradeoffs,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1492-1525, 2017.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. ACM,
2009, pp. 202-208.

CISCO, “Cisco global cloud index: Forecast and methodology, 2015-
2020 white paper,” Retrieved 1st June, p. 15, 2016.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267-280.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 123-137.

I. M. A. Jawarneh, P. Bellavista, L. Foschini, G. Martuscelli, R. Mon-
tanari, A. Palopoli, and F. Bosi, “Qos and performance metrics for
container-based virtualization in cloud environments,” in Proceedings
of the 20th International Conference on Distributed Computing and
Networking. ACM, 2019, pp. 178-182.

N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” CLOUD COMPUTING 2015, pp.
165-169, 2015.

A. Zismer, “Performance of docker overlay networks,” University of
Amsterdam, 2016.

iPerf, “iperf - the tcp, udp and sctp network bandwidth measurement
tool,” 2019. [Online]. Available: https://iperf.fr/

Mellanox, “Mellanox/sockperf: Network benchmarking utility,” 2019.
[Online]. Available: https://github.com/Mellanox/sockperf

C. I. King, “stress-ng,” 2019. [Online]. Available: https://kernel.ubuntu.
com/~cking/stress-ng/

CISCO, “datacenter/empirical-traffic-gen: Simple client-server appli-
cation for generating user-defined traffic patterns,” 2019. [Online].
Available: https://github.com/datacenter/empirical-traffic- gen

D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1-14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19
OpenStack, “Build the future of open infrastructure,” 2019. [Online].
Available: https://www.openstack.org/

