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Abstract

The recent advances on data center management and applications develop-

ment are reflected by lightweight containers technology and critical Quality-of-

Service (QoS) requirements. Tenants encapsulate applications in containers ab-

stracting away details on the infrastructure, and entrust its management frame-

work with the provisioning of network and time QoS requirements. In this paper,

we addressed this NP-hard scheduling problem proposing a GPU Accelerated

Containers Scheduler (GPUACS). We model the joint allocation of network and

containers with QoS requirements as a graph embedding problem. GPUACS

innovates by refactoring two Multicriteria Decision Makings (MCDMs) to GPU

model, as well as by defining an efficient data structure to speed up the com-

parison of time-evolving QoS requirements. GPUACS follows a modular and

configurable architecture, and the scheduling objective function can be adjusted

by selecting the MCDM method and setting the appropriated weights to guide

the comparisons. An experimental analysis demonstrated the sensitivity that

GPU-tailored MCDM methods have to schedule container requests consider-

ing critical time, network, and processing criteria, as well as multiple queuing

policies.
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1. Introduction

The problem of efficiently allocating a set of servers to host a set of jobs is

a fundamental challenge in distributed systems. Such a scheduling problem is

well-known in the specialized literature, but the combination of a large number

of concurrent jobs (numerous clients, different applications), and the large size5

of current data centers (DCs) (countless servers) brings a whole new dimension

to the problem. Over the last years, several schedulers have been developed

for DC resources, allocating together servers and networking equipment. They

host jobs deployed on real machines, Virtual Machines (VMs) or even containers,

according to a variety of scenarios as, for instance, high performance computing10

and clouds [1, 2, 3].

The large-size of current DCs and the heterogeneity of jobs make it hard for

schedulers to simultaneously achieve QoS requirements, high DC utilization, and

scheduling delays. Moreover, communication plays a central role in distributed

applications. Point-to-point or collective communication are used to distribute15

tasks and data, synchronize the execution, and monitor the application. In this

sense, network requirements must be jointly analyzed with processing ones to

improve the performance indicators of DCs and applications. However, any ad-

ditional network QoS requirement increases the number of comparisons needed

to select candidates for hosting communicating jobs. Given the facts, the main20

objective of the present work is to advance the field on scheduling network-

aware containers requests by considering 3-axes together of open challenges on

large-scale containerized DCs:

1. Joint allocation of networks and containers. Although containers

offer a disruptive technology, the complexity of network management in25

containerized DCs is not softened by the container technology. The joint

scheduling of network requirements (e.g., latency, high resource utilization,
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and bandwidth sharing) using malleable and lightweight containers is an

open challenge [4]. In addition, the network building blocks for containers

are based on third-party drivers for virtual network provisioning, which30

naturally induces to communication overheads [5]. Specifically regarding

the scheduling delays (time needed to decide and propagate an allocation),

the number of comparisons necessary to select servers for hosting commu-

nicating containers is increased when compared to standalone containers

scheduling. In fact, in addition to selecting servers, the scheduler must35

indicate a DC path with QoS guarantees to forward data between the

containers.

2. Time-constrained requests. Time-critical jobs have specific require-

ments for scheduling. The allocation and execution of a job after a strict

deadline is undesirable as it consumes resources (processing and network-40

ing) to perform tasks which are no longer useful. In addition, the het-

erogeneity of containerized workloads as well as the large-scale topology

of distributed DC applications impose a computational barrier for sched-

ulers. On the application-oriented DCs management’s perspective, the

scheduler runtime influences on DC resource usage and acceptance ratio45

of requests [6], while for application’s perspective can increase the waiting

time before executions [2].

3. DC dimensionality and scheduler scalability. The joint scheduling

of containers and network requirements can be reduced to a series of sim-

ilar NP-hard problems, such as the multi-way separator problem and the50

virtual network embedding [7, 8]. The diversity of job requests combined

to the high-dimension of contemporaneous DCs are indeed critical factors

for a scheduler. In terms of execution time and multi-objective combina-

torial analysis, finding an efficient mapping of requests onto DC resources

results on a dichotomy (runtime vs. quality). Schedulers carrying out a55

great number of comparisons (candidates DC resources and jobs) tend to

explore the search space in wide, consequently finding accurate results.

However, they require high execution times. Current DC can achieve
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hundreds of thousands of servers, interconnected by multipath network

topologies in the same scale, making the wide search impractical due to60

time and processing constrains.

1.1. Contributions

The adoption of Graphics Processing Units (GPUs) as a high-performance

accelerator to schedule virtual infrastructures has been pointed out as a promis-

ing approach [9, 3]. Traditional algorithms have been refactored to efficiently ex-65

plore the Single Instruction Multiple Data (SIMD) parallelism model of GPUs.

A SIMD architecture enables multiple parallel comparisons between DC re-

sources candidates and requests components, however, requires the refactor-

ing of existing algorithms to properly exploit a vectorial architecture. Follow-

ing this line, the present work proposes GPU Accelerated Containers Sched-70

uler (GPUACS). Figure 1 depicts a generic scenario to schedule a container-

based application with heterogeneous requirements. An application can be

spread in dozens, hundreds, or even thousands blocks, and each block requires

a QoS configuration.
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Application
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provisioning
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Figure 1: General scenario of GPUACS usage.

Regarding to the three challenges and research opportunities aforementioned,75
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GPUACS presents two main contributions1:

• A scalable scheduler: we model the joint allocation of network and contain-

ers with QoS requirements (challenge 1) as a graph embedding problem,

in which vertices denote the DC servers (or containers) and edges repre-

sent the physical links and paths (or communication requirements). In80

addition, delay-sensitive requests (challenge 2) inform a fixed constraint

regarding the end of execution time. The objective is to find a set of DC re-

sources to host the request which meets into the QoS and time constraints.

GPUACS innovated by refactoring two MCDM methods (Technique for

Order Preference by Similarity to Ideal Solution (TOPSIS) and Analytic85

Hierarchy Process (AHP)) to the GPU SIMD programming model, as well

as by proposing an Augmented Forest (a set of Augmented Trees) as a data

structure to speed up the comparison of time-evolving QoS requirements

(challenge 3). MCDM literature contains numerous proposals for ranking

and selecting alternatives. In this work, we selected TOPSIS and AHP90

motivated by the code portability to GPU as well as for the simplicity

and objectivity when modelling the problem, offered by both hierarchical

methods.

• MCDM configuration and modular architecture: GPUACS follows a mod-

ular and configurable architecture to accommodate multiple DCs policies95

and request priority queues (challenges 2 and 3). Moreover, the sched-

uler objective function can be adjusted by selecting the MCDM method

(or even including a new one) and setting the appropriated weights to

guide the comparisons (challenge 1). Finally, GPUACS offers 7 options

for ordering the request queues.100

GPUACS was assessed in our experimental scalability analysis to schedule

multiple large-scale requests on a DC with more than 20,000 servers. On av-

1Preliminary results were published at [3]. Specifically, the publication focused on network-

aware scheduling of containers.
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erage, our decision was computed in less than 3.5 seconds, even considering

network and time requirements. A comparison of our results with traditional

scheduling approaches (consolidation and spreading) shows GPUACS provides105

a decrease of the execution delay of requests while not increasing the DC net-

work and server usage. Finally, the configurable aspect of GPUACS MCDM

modules soften the impact on schedulers performance (DC resource usage and

acceptance ratio) related with queuing policy selection.

1.2. Organization110

This paper is organized as follows. Related work is discussed in Section 2,

while the problem formulation and the modular architecture of GPUACS are

presented in Sections 3 and 4, respectively. An evaluation of GPUACS is pre-

sented in Section 5. Finally, Section 6 lists our final remarks and future work.

2. Related work115

State-of-the-art on scheduling containers, microservices, and network re-

quirements seems to be still evolving nowadays, and this section reviews some

recent proposals on the subject. It also includes a review of other similar propos-

als for scheduling Virtual Infrastructures (VIs), composed of VMs and virtual

networking services. Table 1 summarizes the proposals reviewed, indicating the120

multicriteria method and the objective function of each one.

Guo et al. proposed the containers scheduling based on neighbourhood di-

vision algorithms to provide load balance as well as to reduce the distances

between containers [10]. The experimental analysis comprised a homogeneous

DC with serves interconnected by a Fat-tree [11] topology (k = 18, 1458 servers),125

comparing the proposal with a traditional Particle Swarm Optimization (PSO) [12].

In turn, Havet et al. proposed a framework to monitor and schedule containers

on DCs, termed GenPack [13]. To reduce the energy consumption, GenPack

uses a generational garbage collection and active monitoring techniques. The

experimental analysis compared GenPack versus the traditional Docker Swarm130
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using a sample of Google Borg [6] traces as request input. The DC was com-

posed by 13 servers, and the analysis pointed out the efficiency of GenPack for

energy reduction.

The load balance of microservices (hosted by containers) on multitenant DC

was investigated by Guerrero et al. [14]. In order to guide the decision making,135

the scheduler considered the containers workload and the network bandwidth us-

age. The experimental analysis indicates superior results from Kubernetes poli-

cies when allocating requests on a heterogeneous DC composed of 400 servers.

Hu et al. [15] modelled the containers scheduling as a minimum-cost flow prob-

lem. The experimental analysis considered a DC composed of 30 heterogeneous140

servers. The default Kubernetes and Swarm schedulers were used as baseline

for comparison, and the proposal reduced the average slowdown up to 30%.

Regarding VIs, Souza et al. investigated the allocation of Sofware Defined

Networking (SDN)-based DC resources to host multi-tenant requests [16, 17].

The problem was formulated as a Mixed Integer Linear Programming (MILP),145

comprising latency and bandwidth requirements together with VMs demands.

However, due to the problem complexity nature, solving exact models became

computationally unfeasible. Then, the authors relaxed the problem’s integer

constraints, resulting in a linear program, in which a heuristic was introduced.

Although the results highlighted the reduction on average latency, as aimed,150

they indicate a clear scalability limit of linear programs and heuristics for

scheduling DC resources to host VIs.

In an investigation regarding priority queues, AHP and PSO was proposed

by Alla et al. [18]. Their scheduler has a three-phase pipelined execution: (i)

the requests are dynamically ordered on a priority queue; (ii) requests are send155

to AHP for ranking and latter forwarded to PSO; finally, (iii) PSO takes the

decision. The experimental analysis was conducted on a DC composed of 60

servers, and 30 requests were submitted, comparing the resulting makespan

with a traditional First Come First Served (FCFS). Following a similar track,

Paswar [19] proposed a VM two-phase scheduler based on PSO and TOPSIS.160

The algorithm’s first phase applies TOPSIS to rank the candidates (DC servers),
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while the second phase uses PSO over the previously ranked servers.

Nesi et al. proposed a GPU-accelerated scheduling framework demonstrating

that is possible to scale up the problem through the use of parallel programming

techniques [20, 9]. Their framework is composed of clustering and graphs al-165

gorithms, and supports simulations with contemporary DC network topologies

(e.g., Fat-Tree, Bcube, and Dcell.). A performance analysis shows speedups

of more than 6, 000, when comparing with traditional CPU graph embedding

algorithms.

Carstan et al. revisited the easy backfilling algorithm investigating the in-170

fluence of different queueing policies [2]. It analyzed queuing policies as FCFS,

lower-time estimate, smallest estimated area first, and less resources first, with

an easy backfilling approach. In short, the policy based on promoting smallest

estimated areas reduced the average slowdown while ensuring no starvation in

requests.175

Table 1 summarizes the related work presented above. Most proposals are

implemented using CPUs, facing a scalability barrier due to the natural prob-

lem complexity. Although the problem of joint allocation of VMs and network

requirements has been addressed in the literature, there seems to be a lack of

solutions and research addressing the joint scheduling of containers and their180

network interconnections. The present work is positioned on these research op-

portunities, achieving results on DCs equipped with more than 24, 000 servers

(as discussed in Section 5). Furthermore, GPUACS uses MCDM methods accel-

erated by GPU to make the selection of the most appropriated server to support

a request analysing multiple requirements, including the network’s perspective.185

A GPU-tailored implementation of MCDM methods emerges as a promising ap-

proach to allocate resources on a large-scale DC, hosting time-critical requests

composed of a dynamic set of criteria, QoS constraints, and optimization trade-

offs.
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Ref. Algorithms/Model Resources Network # Servers

[18]
Priority queues with

AHP and PSO
VM no 60

[14] Genetic algorithms container / VM yes 400

[10] Neighborhood division container yes 1, 458

[13]

Generational garbage

collection and active

monitoring

container no 13

[19] TOPSIS and PSO VM no 10

[16] MILP VM yes 128

[20] [9]
GPU-accelerated

algorithms
VM no 16, 000

[2]
Easy backfilling and

priority queues
VM no 144

[15]
Minimum-cost flow

problem
container yes 30

Table 1: Summary of related work.

3. Problem formulation190

Our formulation of the problem starts using a traditional weighted undi-

rected graph embedding. Following this formulation, we argue the DC adminis-

trator should be able to dynamically configure the scheduler, instead of defining

a specific fixed objective function. Finally, we consider using different queueing

policies.195

3.1. Weighted undirected graph embedding problem

The allocation of DC resources to host containers and network requirements

considering QoS and time constraints is modelled as a graph embedding prob-
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lem. Table 2 summarizes the notation and symbols used along this work. The

DC is represented by a weighted undirected graph Gs = (Ns, Es), where Ns
200

denotes the servers and Es is the set of links connecting all servers. The capac-

ities vector of a server u ∈ Ns is given by csu[r] for capacities r ∈ R, while bws
uv

denotes the available bandwidth between servers u and v. Following this line,

Req(N c, Ec) represents a request composed of a set of containers N c and their

interconnection details (Ec). The containers are organized in pods, represented205

by podi.
2 A set of container’s QoS requirements is informed by the tenant, as

well as the target bandwidth between a pair of containers. Moreover, the QoS

requirements are specified as intervals of minimum and maximum capacities.

In other words, ∀r ∈ R;
[
cmin[r], cmax[r]

]
and ∀e ∈ Ec;

[
bwmin[e], bwmax[e]

]
for

containers and bandwidth, respectively. Finally, each request informs a set of210

time constraints for containers. For a given container i ∈ N c, the estimated

processing time (proci, termed walltime) and an execution deadline (deadlinei)

are specified. The first information is mandatory, while the second is optional.

The scheduling of a DC resource to host a container is given by a map

Ms(i), while Me(ij) follows the same principle for container’s interconnec-215

tions. A map is valid only if all QoS requirements and time constraints are

provisioned and guaranteed by the DC infrastructure. Alongside defining a DC

server for hosting the container, the provisioned capacity for each r ∈ R must

be allocated, respecting the minimum and maximum intervals specified by the

application’s owner during all reservation period (walltime). In this sense, caiu[r]220

represents the capacities allocated on server u for hosting a container i, while

bwa
ijuv denotes the bandwidth reserved to support the communication between

containers i and j atop the physical link uv ∈ Es. If containers i and j have

the same pod identificator associated with, they must be hosted by the same

server; in other words,Ms(i) ==Ms(j). Regarding the time constraints, each225

container’s request has a submission time (subi) associated with by the DC or-

2The organization in pods allow for modelling the same grouping method offered by Ku-

bernetes, which is currently a very popular container manager system.
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Notation Description

Gs(Ns, Es) data center (DC) graph composed of Ns servers and Es links

csu[r] Array of resources capacities for a server u ∈ Ns

bws
uv Bandwidth capacity between servers u and v, uv ∈ Es

Req(N c, Ec) Request composed of N c containers and Ec links

cmin
i [r], cmax

i [r] Minimum and maximum QoS requirements for i ∈ N c

bwmin
ij , bwmax

ij Minimum and maximum bandwidth requirements for ij ∈ Ec

podi Each container i ∈ N c belongs to a pod

caiu[r] QoS resources capacities from u ∈ Ns allocated to i ∈ N c

bwa
ijuv Bandwidth capacity from uv ∈ Es allocated to ij ∈ Ec

proci Estimated processing time (walltime) of container i ∈ N c

deadlinei Execution deadline of i ∈ N c

Table 2: Symbols and notation used to represent the DC and requests; i and j denote con-

tainers while u and v represent DC servers.

chestrator. When a request is not instantly mapped at time subi, the waiting

time is accounted by the scheduler (waiti). Thus, a request map is valid only if

subi + waiti + proci ≤ deadlinei.

Finally, the decision for selecting an appropriated mapping must be guided230

by the providers’ own objectives. DC consolidation, decrease average makespan,

decrease energy-consumption, improve Quality-of-Experience (QoE), and in-

crease reliability are examples of objective functions. We argue such information

is critical, and should be refined by the infrastructure administrator. Each di-

mension composing the objective function (i.e., cost, energy consumption, and235

network usage) should be configurable with specific weights. In this sense, we

propose in the following a configurable architecture, based on MCDM methods.
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3.2. MCDM methods

Among the existing methods to solve MCDM, we selected Analytic Hierarchy

Process (AHP) [21] and Technique for Order Preference by Similarity to Ideal240

Solution (TOPSIS) [22], chosen due to their multidimensional analysis, being

able to work with several servers simultaneously. Also, AHP and TOPSIS pro-

vide structured methods to decompose the problem and to consider trade-offs

in conflicting criteria. Specifically regarding to the network bandwidth require-

ments, the sum of all bandwidth capacity bws
uv with source on u is accounted245

and included on csu.

AHP is a MCDM algorithm which hierarchically decomposes the problem to

reduce the complexity, and performs a pairwise comparison in order to rank all

alternatives. In short, the hierarchical organization is composed of three main

levels. The objective function of the problem is noted at the top of the hierarchy,250

while the set of criteria is placed in the second level. Finally, the third level

represents all the viable alternatives to solve the problem. In turn, TOPSIS

is based in the shortest Euclidean Distance from the alternative to the ideal

solution, and handles a large number of criteria and alternatives while requiring

a small number of qualitative inputs when compared to AHP.255

AHP and TOPSIS are both guided by a weighting vector to define the im-

portance of each criteria. In other words, a vector W = {α0, α0, ..., α|R|−1} en-

ables the configuration based on the DC administrator’s perspective, in which∑
i∈R αi = 1. Table 3 presents three weight configuration representing distinct

objective functions traditionally used in the specialized literature (discussed in260

Section 2). Four criteria can be configured (CPU, RAM, DC fragmentation, and

bandwidth). CPU and RAM guide the DC servers selection, while bandwidth

is used to find an appropriated DC path. The fragmentation’s metric accounts

the ratio of active DC resources by the total number of resources.

The flat configuration applies the same importance level for all criteria. The265

focus of clustering configuration is to consolidate containers atop DC servers

as well as to reduce the use of physical links. In this sense, the fragmentation

metric receives a weight configuration of 50%. Finally, the network QoS config-
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uration gives more importance to network bandwidth configuration guiding the

scheduler’s decision.270

Objective CPU RAM DC fragmentation Bandwidth

Flat 0.25 0.25 0.25 0.25

Consolidation 0.17 0.17 0.50 0.16

Network QoS 0.17 0.17 0.16 0.50

Table 3: Weighting configurations for AHP and TOPSIS.

We reinforce, the weights assigned to each criterion (Table 3) can be ad-

justed by the administrator to your specific needs. New configurations can be

easily incorporated to allow comparison with other works as well as to test new

scenarios.

3.3. Queueing policies275

Assigning priorities is not trivial, and their choice have a direct impact on

performance and DC usage [2]. A DC administrator can select a queueing

policy (φ) to order the requests before submitting them to the scheduler. We

extended traditional queueing policies in order to cope with container requests

using intervals (minimum and maximum values). A DC administrator can select280

the appropriated one given the allocation objective and the scheduling algorithm

(Section 5.5). Table 4 contains the queueing policies considered in this work.

FCFS considers only the submission time (subi) for ordering the requests,

while Smallest Estimated Processing Time First (SPF) orders by estimating

the execution time of each request (ascending order). In turn, Smallest Min-285

inum Resource Requirement First (SQFMin) and Smallest Maximum Resource

Requirement First (SQFMax) consider the sum of minimum and maximum re-

quested resources, respectively (ascending order). In addition to resource capac-

ity, Smallest Minimum Resource Area First (SAFMin) and Smallest Maximum

Resource Area First (SAFMax) analyse the execution time, while Smallest Re-290
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Policy Description Objective

FCFS First Come First Served φ = subi

SPF
Smallest Estimated Processing Time

First
φ = proci

SQFMin
Smallest Mininum Resource

Requirement First
φ = cmin

i

SQFMax
Smallest Maximum Resource

Requirement First
φ = cmax

i

SAFMin Smallest Minimum Resource Area First φ = proci × cmin
i

SAFMax
Smallest Maximum Resource Area

First
φ = proci × cmax

i

SDAF Smallest Resource Area First φ = proci× (cmax
i −cmin

i )

Table 4: Queueing policies.

source Area First (SDAF) is based on range of capacities. Section 5 presents

how the choice of a queueing policy has an impact on scheduler performance.

The problem formulation as a graph embedding problem with weights (re-

quirements) on vertices and edges can be reduced to a series of similar NP-hard

class problems, such as the multi-way separator problem and the virtual network295

embedding [8]. MCDM algorithms appear as candidates to deal with multiple

criteria (QoS, time, and queuing policies), but it run into the complexity lim-

itations of the problem class. The complexity of computing solutions usually

implies high response time, in which the solution is no longer needed. Thus,

alternatives based on GPU allow to improve the state-of-the-art with results300

plausible to be used in real world scenarios.
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4. GPU Accelerated Containers Scheduler (GPUACS)

The scheduler’s architecture, main modules, and prototyping algorithms are

depicted in Figure 2. The figure indicates the core architecture’s modules (white

color) as well as algorithms selected for implementing a GPU-accelerated pro-305

totype (gray). Following the problem formulation (Section 3), the architec-

ture supports 7 queueing policies for ordering the requests, while the core of

the scheduler comprises MCDM methods, multicriteria weighs, clustering algo-

rithms and analysis of time constraints. The main core components are detailed

in the following sections. It is worthwhile to note that GPUACS proposes a310

modular and configurable architecture. Although the discussion indicates a set

of previous selected algorithms for composing the GPUACS prototype, other

choices are easily adaptable.

Core
MCDM method

Queue
FCFS SPF

SQFMin SQFMax

SAFMin SAFMax

SDAF

AHP TOPSIS

Multicriteria weight
Consolidation Network QoS

Clustering
MCL

Time constraints
Augmented Tree

Architecture component

Prototype

Figure 2: Scheduler main modules and prototyping algorithms.

4.1. DC clustering

Concerning the scalability goal of GPUACS, a data cluster technique is315

used to decrease the number of comparisons when analyzing DC candidates and

request’s components. Among the classical algorithms for clustering data and

graphs, we selected Markov Cluster Algorithm (MCL) [23] for composing the

prototype. MCL is a clustering algorithm specific to graphs based on edges

flow and Markov chain. The GPU implementation [9, 20] drastically reduced320
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the execution time of traditional scheduler’s algorithms enabling the analysis of

large-scale DC topologies.

Initially, GPUACS creates groups of servers based on computing and net-

working characteristics. Latter, the groups are given as inputs for the MCDM

module as well as the request’s requirements. The MCL clustering algorithm325

has a direct impact on scheduler speedup on large-scale topologies, while for

small-scale clustering induces a processing overhead (the analysis is detailed in

Section 5). In this context, GPUACS prototype uses a threshold (DC servers

≥ 1024) to verify if MCL must be activated.

4.2. GPU-tailored AHP330

The AHP algorithm (described in Section 3.2) was restructured for Single

Instruction Multiple Data (SIMD) execution. In short, all matrices NxN were

converted to vectors (N2), and shared-memory techniques were applied, requir-

ing adaptations in the AHP traditional algorithm. First, two vectors (M1 and

M2) are populated combining criteria and alternatives (second and third lev-335

els of AHP hierarchy) while applying the weights defined in Table 3. In other

words, M1[v] = W [v];∀v ∈ R while M2[v × |Ns|+ u] = csu[v]; ∀u ∈ Ns;∀v ∈ R.

Following, a pairwise comparison is executed for all hierarchy levels to se-

lected the appropriated candidate server (x ∈ Ns). For M1[v × |R| + u] >

0, M1[v × |R| + u] − M1[x × |R| + u] is selected; if M1[v × |R| + u] ≤ 0,340

1

M1[v × |R|+ u]−M1[x× |R|+ u]
is selected; and 1 otherwise. The same ra-

tionale is applied for M2 with index v × |Ns|2 + x × |Ns| + u. Finally, both

vectors are normalized.

Successively, the algorithm calculates the local ranking of each element in

the hierarchy (composing L1 and L2) as given by Equations (1) and (2), ∀u, v ∈345

R;∀y, w ∈ Ns. Finally, the global priority (PG) is account for all servers as

given by PG[v] =
∑

x∈Ns P1[v]× P2[v × |Ns|+ x].
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L1[v × |R|+ u] =

∑
x∈RM1[v × |R|+ x]

|R|
(1)

L2[v × |Ns|+ w] =

∑
x∈Ns M2[v × |Ns|2 + y × |Ns|+ x]

|Ns|
(2)

Concerning the GPU implementation, 5 kernels were implemented to com-

pute the AHP, managed by a centralized CPU thread. Details on GPU memory

usage are provided in Section 4.6.350

4.3. GPU-tailored TOPSIS

The GPU kernels of TOPSIS follow the data structure from AHP (N2 vec-

tors), nevertheless the TOPSIS algorithm enables the use of other parallel tech-

niques such as parallel reductions and avoidance of memory conflicts. In order to

implement TOPSIS for GPU execution, 11 kernels were developed, coordinated355

by a CPU thread.

TOPSIS requires 5 steps to rank the DC servers. Initially, an evaluation

vector M correlates DC resources (Ns) and scheduling criteria (R), in which

M [v × |Ns| + u] = csu[v]; ∀u ∈ Ns;∀v ∈ R, which is later normalized. The

next step is the application of the weight configuration over the M values,360

M [v × |Ns|+ u] = M [v × |Ns|+ u]×W [v];∀u ∈ Ns;∀v ∈ R.

Following, two vectors are composed with the minimum and maximum values

for each criteria, obtained from M . Specifically, A− comprises the minimum

values while A+ denotes the maximum. Both vectors are used to account the

Euclidian Distance from M , composing Ed− e Ed+, respectively. Finally, the365

proximity coefficient vector is calculated for all servers, denoted by Rank[u] =

Ed−[u]

Ed+[u] + Ed−[u]
; ∀u ∈ Ns, and then the result vector is ordered in descending

order, indicating the selected candidates [24]. The prototype implementation is

described in Section 4.6.

17



4.4. GPUACS core algorithms370

The core algorithms of GPUACS are summarized by Algorithms 1, 2 and

3. Algorithm 1 presents a general view of the scheduler management, while

Algorithms 2 and 3 detail the containers and network allocation, respectively.

Algorithm 1: GPUACS core management module.
Input: Gs, Req

Output: Ms,Me

1 begin

2 ranking method← select MCDM()

3 groups← resources cluster(Gs)

4 for ∀pod ∈ Req do

5 Mt ← GPUACS containers(Ns, pod, groups, ranking method)

6 if (Mt == ∅) then

7 postpone(Req)

8 return (∅, ∅)

9 end

10 Ms ←Ms +Mt

11 end

12 Mt ← GPUACS network(Gs, Req,Ms)

13 if (Mt == ∅) then

14 postpone(Req)

15 return (∅, ∅)

16 end

17 update DC(Gs, Es,Ms,Me)

18 return (Ms,Me)

19 end

In general, Algorithm 1 sequentially analyses all pods (groups of contain-

ers) from a given request Req, guided by the configuration previously defined375

(MCDM method and resources clustering). Indeed, the main rationale indi-

cates an initial selection of DC candidates for hosting containers (detailed by

Algorithm 2) followed by the search of DC paths with network QoS assurance

(Algorithm 3). Specifically, Algorithm 1 identifies the MCDM option (line 2),

and applies the MCL clustering method to create groups of DC servers (line 3).380

A tenant can organize the containers in pods, defining all containers from a given

pod must be allocated atop the same DC server (line 4). When the scheduling

is not correctly accounted (lines 6 and 13), then the request is postponed and
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empty set is returned. It is worthwhile to mention, the postponing of requests

is a DC administrator choice, and when it is not selected, the request is imme-385

diately rejected by GPUACS. Once containers are scheduled, the network QoS

requirements are ensured by GPUACS (line 12). Thus, when a request is fully

analyzed and scheduled, the DC is updated (line 17) decreasing the available

capacity of resources (severs and network).

In order to schedule containers, the Algorithm 2 receives the set of DC390

servers, the pod to be analyzed, the groups of servers (if available), and the

MCDM ranking method. In short, Algorithm 2 schedules containers atop DC

groups of servers or individual servers, based on the parameterization. The

predefined MCDM algorithm is used to rank and compare all options, assur-

ing the QoS requirements. When groups are used (line 2), a small fraction of395

DC resources is clustered and ranked by the MCDM method (line 3). Other-

wise, the entire DC is analyzed (line 13). Moreover, GPUACS must be aware

of QoS constraints (lines 5 and 14) considering the minimum and maximum

requirements. The function QoS min max() aims at maximizing the resources

capacity for all containers of a given pod that share a DC server. However, to400

reduce the number of comparisons, capacities values are gradually reduced by

10% from the maximum capacity specified by the request. Finally, when all

DC candidates are analyzed and a suitable server is not found, an empty set is

returned (line 20).

Afterwards, Algorithm 3 prepares the network paths for hosting the com-405

munication requirements between two containers. It is worthwhile to mention

that even containers from the same pod (which are scheduler for the same DC

server) must have their communication requirements guaranteed by GPUACS.

In short, the goal of Algorithm 3 is to guarantee that the DC has enough ca-

pacity to provide the QoS requirements. All containers with communication410

requirements are processed in pairs (lines 2 and 3). A QoS-guaranteed DC

path must be available between the servers selected for hosting containers i

and j (line 4). The same rationale for containers minimum and maximum re-

quirements is applied for bandwidth requirements (when need, the bandwidth
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Algorithm 2: GPUACS containers module.
Input: Ns, podi, groups, ranking method

Output: Ms

1 begin

2 if (groups 6= ∅) then

3 for ∀g ∈ ranking method(groups) do

4 for ∀u ∈ ranking method({u ∈ g}) do

5 if QoS min max(u, podi) then

6 Ms(i) = u

7 returnMs

8 end

9 end

10 end

11 end

12 else

13 for ∀u ∈ ranking method(Ns) do

14 if QoS min max(u, podi) then

15 Ms(i) = u

16 returnMs

17 end

18 end

19 end

20 return ∅

21 end

requirement is gradually decrease until reaching the minimum value). If a path415

P is available, the communication mapping is updated (line 9), otherwise, an

empty set is returned.

Regarding to the GPU accelerations, the first step is observed on Algo-

rithm 1 at line 4. All pods are parallel processed by GPUACS. In addition, the

ranking method() is executed in parallel for all DC candidates at lines 3, 4, 5, 13420

and 14 of Algorithm 2. In turn, the widest path() from Algorithm 3 uses the

GPU SIMD architecture to analyze all paths from a DC. This function is a mod-

ified version of Dijkstra’s algorithm to find a path between servers for hosting

containers i and j with QoS requirements. The widest path() GPU kernel exe-

cutes multiple parallel threads with different pairs of source and destination DC425

servers. In order to reduce the GPU memory use, the algorithm was structured
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Algorithm 3: GPUACS network module.
Input: Gs, Req,Ms

Output: Me

1 begin

2 for ∀i ∈ Nc do

3 for ∀j ∈ Nc|ij ∈ Ec do

4 P ← widest path(Ms(i),Ms(j), bwmin
ij , bwmax

ij )

5 if P = ∅ then

6 return ∅

7 end

8 else

9 Me(ij)← uv|∀uv ∈ P

10 end

11 end

12 end

13 returnMe

14 end

as an undirected graph. In other words, the algorithm stores
N × (N − 1)

2
, and

given two servers u and v, where u < v, the links u→ v and v → u are equal.

The functions related with verification of QoS requirements, QoS min max()

and widest path(), must analyze the reservation and capacity profiles of each430

server and links. A profile is used to represent the reservations over time, as well

as the residual (available) capacity of each resource (e.g., RAM, CPU, and band-

width). This hard constraints impose a computational challenge for GPUACS,

as discussed in the following section.

Finally, regarding the algorithm complexity, the Algorithm 1 has O(1) op-435

erations, except the grouping technique (O(|Ns| ∗ |R|2|) for MCL), while Algo-

rithms 2 and 3 are dependent on the MCDM selection. Specifically, the Algo-

rithm 2 is detailed as O(|pods|∗|Ns|∗MCDM), and Algorithm 3 is summarized

as O(|Ns| ∗ |Es| ∗ (|Ns| ∗ log|Ns|+ |Es|)).

4.5. Time-constrained scheduling440

GPUACS supports two ways of working with time constraints, with and

without requests re-submission. The DC administrator is responsible for select-
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ing the desired configuration, which can be changed at any time. In short, the

method without re-submission immediately rejects requests when any criteria

(QoS or time) can not be guaranteed, while the method with re-submission445

postpones requests for future reanalysis.

For speeding up the processing of time-constrained requests, GPUACS relays

on a data structure termed Augmented Tree (AT). The structure is inspired

on traditional binary and Adelson-Velsky and Landis Tree (AVL) trees and

optimized to process time intervals. Different from traditional AVL, the AT450

uses time intervals as keys and enables duplicated keys.

A set of |R| trees are created for each DC resource. Specifically, each DC

server and link resource r ∈ R (i.e., CPU, RAM, and bandwidth) has a dedicated

tree, and the set of all trees compose an Augmented Forest (AF). A node from

the tree is composed of a tuple < start, end, allocated, left node, right node >,455

where start and end denote the period under analysis, and allocated indicates

the physical capacity already reserved for hosting containers. Thus, left node

and right node are pointers to control the tree structure.

The insertion, removal, and balancing operations are similar to the AVL

structure, while the availability of capacity at a given time instant is verified460

as overlapping intervals. DC resources min and max values are defined by the

administrator, while for a request for i ∈ N c, the min is given by the submission

time (subi) and the max by the estimated (subi + proci) or rigid (deadlinei)

execution time.

4.6. Prototype implementation and target hardware465

A proof-of-concept implementation of GPUACS was developed with C++

and NVIDIA CUDA toolkit 10.2, compiled with GCC 8.3. The code was

optimized (memory limits and bandwidth) to a GPU NVIDIA RTX 2080TI

(11GB), hosted by a server equipped with Intel i7− 8700K, 32GB RAM DDR4

(3200MHz). Specifically, the block size follows the GPU warp configuration,470

and all matrices-based kernels used single global matrices, to reduce the num-

ber of data movement between threads and GPU memory, as well as to fit
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large DC and request structures. Eventually, shared memory is used to transfer

data between threads from a single block. The implementation decision (global

memory) reduces the speedup improvement in order to obtain scalability. GPU475

kernels are instantiated up to 3 dimensions, and pinned memory is used to ac-

celerate data movement from host to GPU device. Finally, an implementation

of a discrete event simulator go along employing the GPUACS prototype.

5. Evaluation of GPUACS performance

We evaluate GPUACS regarding the three main challenges addressed by480

the present work: joint containers and network requirements allocation; time-

constrained requests; and DC dimensionality and scheduler’s scalability. Fig-

ure 3 summarizes the evaluation details (comprising goals, metrics, and algo-

rithms) and is used along this section to guide the discussion.

Join containers and 
network allocation

Time-constrained 
requests

DC dimensionality and 
scheduler’s scalabilityGoal

Metrics Execution time Execution time, 
fragmentation, and delay

Section 5.3 Section 5.4Section 5.2

Acceptance ratio, 
fragmentation, CPU 
footprint, and delay

Requests 
details

Each request is 
composed of # 

containers = [1, 262144]

6000 requests, each with 
4 containers. 50% 
grouped in pods. 

Bandwidth req. 50 Mbps

35000 requests based on 
real applications

DC 
configuration Fat-tree k = [4, 46] Fat-tree k = 20 Fat-tree k = 12

GPUACS 
algorithms AHP and TOPSIS AHP and TOPSIS AHP

Baseline for 
analysis

Related work from 
Section 2

High Availability (HA) and 
Consolidation with 

Shortest Path
Easy Backfilling (EB)

Standard (with and 
without resubmission)

Deadline-critical (with 
and without 

resubmission)

Deadline-critical and 
early-ended (with and 
without resubmission)

Priority queues

Section 5.5

Acceptance ratio, 
fragmentation, and CPU 

footprint

Fat-tree k = 12

AHP (FCFS, SPF, 
SAFMin, SAFMax, 

SQFMin, SQFMax, SDAF)

Easy Backfilling (EB)

35000 requests based on 
real applications

Standard (with 
resubmission)

Figure 3: Summary of evaluation protocol, metrics, configurations and algorithms.
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Each column from Figure 3 denotes the parameterization for a specific eval-485

uation goal. Initially, large-scale DC topologies and containers requests are an-

alyzed to highlight the performance improvement (execution time) from GPU-

tailored implementations (Section 5.2). Following, the network requirements

(bandwidth and latency - represented by pods) are introduced to deepen the

analysis (Section 5.3). A set of time-constrained requests are prepared and sub-490

mitted comparing the performance of GPUACS AHP with the traditional Easy

Backfilling algorithm (Section 5.4). Finally, the impact of priority queues is in-

dividually discussed in Section 5.5. It is worthwhile to mention that GPUACS

is compared with distinct algorithms, previously proposed by the specialized

literature, and multiples metrics are quantified to corroborate the innovations495

claimed by GPUACS, as well as to point out eventual limitations.

5.1. DC topology and experimental protocol

The evaluation considers a DC composed of homogeneous servers equipped

with 24 cores, 256GB RAM and interconnected by a Fat-Tree topology [11]

(Clos-based) and bandwidth capacity of 1Gbps for all links. In a Fat-Tree, the500

number of servers is given by k3/4, where k is used to guide the topology organi-

zation in terms of switches, network links, and servers. In order to compose the

experimental protocol, five metrics were selected to analyze the performance of

GPUACS regarding the contemporaneous scheduling challenges.

• Execution time: The scheduler’s scalability is accounted by the execution505

time required to process large-scale requests and DC configurations. The

analysis aims at finding the upper-bound limit of GPUACS executed on

a single GPU hardware.

• Delay : The container’s requests submitted to GPUACS may experience

a delay on starting time due to DC occupation (given by Fragmentation510

and Footprint metrics). This metric gives insights on efficiency of queuing

policies and time-constrained jobs.
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• DC fragmentation and footprint : The fragmentation of DC servers (links)

is given by the ratio of active servers (links) by the total number of servers

(links). A DC resource is considered active when is hosting at least a515

container (or used to delivery QoS communication requirements). In turn,

the DC footprint accounts the resources (e.g., CPU, RAM, and network

bandwidth) used to host a set of containers requests. Combined, the

metrics give a perspective on joint containers and network requirements

allocation as well as DC consolidation techniques.520

• Acceptance Ratio (AR): GPUACS only schedule a request if all QoS re-

quirements can be provisioned. Eventually, requests are postponed (ana-

lyzed by the delay metric), or definitely rejected. In this sense, the accep-

tance ratio is the proportion of requests accepted to be scheduled.

For each experiment set, the number of servers composing the DC and the525

requests configurations were adapted to represent the analysis goal. Finally, for

each scenario, 10 executions were performed.

5.2. Evaluation of execution time and scalability

The first set of experiments is related with DC dimensionality and scalability

challenges. The scalability of a scheduler is quantified by the number of server-530

container pairs that can be analyzed in an acceptable computational time. In

this sense, the scalability of GPUACS is measured in terms of execution time

to process requests atop small- and large-scale topologies. Specifically, two

scheduling dimensions are jointly analyzed: the number of containers composing

a request and the number of servers in a DC.535

The first dimension, number of containers composing a request, varies be-

tween 1 and 262, 144 containers, while the second dimension follows a Fat-Tree

topology configuration with k between 4 and 46. The configuration is limited

(262, 144 containers in a single request and 24, 334 servers composing a DC) by

GPU memory size (detailed in Section 4.6). As all containers follow an homo-540

geneous configuration with low QoS requirements, and all requests are accepted
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by GPUACS. In this sense, the goal of this experiment is to quantify the GPU

execution time for processing requests.
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Figure 4: Processing time of GPUACS MCDM AHP. The red x symbols represent the

configuration used in experimental evaluation of related work (Section 2).

Figures 4 and 5 present results for AHP and TOPSIS, respectively. The

results are presented as heat-maps. The number of containers composing a545

request evolves on the x-axis, while the Fat-Tree configuration k increases on

y-axis. Each scenario was executed 10 times, and the heat-map presents the

distribution of the execution time using a color scale. Arbitrary, the execution

time of GPUACS was limited to 900 seconds.

Before starting the discussion about GPU-accelerated results, it is impor-550

tant to highlight the limits from CPU-tailored AHP and TOPSIS algorithms.
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Figure 5: Processing time of GPUACS MCDM TOPSIS. The red x symbols represent the

configuration used in experimental evaluation of related work (Section 2).

CPU-only experimentation atop the hardware described in Section 4.6 founds

the scalability barrier for both MCDM methods with 2, 048 containers scheduled

on a k = 16 Fat-Tree topology (1, 024 servers). In addition, the red symbols

represent the configuration used in experimental evaluation of related work (Sec-555

tion 2). It is evident that GPUACS deals with large-scale dimensions: 128x for

requests and 23x for DC servers.

The light-color area from Figures 4 and 5 indicate that both AHP and

TOPSIS methods offered by GPUACS scheduled requests atop large-scale topolo-

gies up to few seconds. Specifically, AHP method outperforms TOPSIS as560

dimensionality increases, as observed for Fat-Tree configurations larger than
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k = 36 and requests composed with more than 16, 384 containers. Finally, with

regarding the scalability challenge, it is evident that GPUACS stands out com-

pared to specialized literature (revised in Section 2) regarding the scheduler’s

scalability.565

5.3. Evaluation of network-aware scheduling

This evaluation set investigates the performance of GPUACS for allocating

a set of requests with containers and network requirements. Network-related

QoS requirements are key aspects that must be considered when scheduling

containers atop a DC. However, as previously motivated in Section 3 the intro-570

duction of network requirements exacerbates the number of comparisons needed

to find a suitable allocation. In this sense, after demonstrating the scalability of

GPUACS (Section 5.2), the purpose of this experiment is to analyze the quality

of the allocations. Specifically, 6, 000 requests are submitted to be scheduled

atop a k = 20 Fat-Tree based DC. Each request is composed of 4 containers with575

a running time up to 250 events (uniformly distributed), while simulations run

until all requests processing are complete. Up to 50% of containers from a single

request are grouped in pods (latency-sensitive containers), while the bandwidth

requirement between a pair of containers is configured up to 50 Mbps (a heavy

network requirement).580

Two algorithms were selected as baseline for comparisons aiming individ-

ually for consolidation or High Availability (HA) (spreading) of containers on

DC. Both algorithms are offered by containers orchestration frameworks as de-

fault schedulers (e.g., Kubernetes and Docker Swarm). Using GPUACS, the

AHP and TOPSIS weighting tables were configured with the network QoS ob-585

jective function described in Table 3 (high importance level for communication

requirements). It is worthwhile to mention, HA and consolidation algorithms

were slightly improved to select a viable network path with QoS requirements

(shortest path).

Results are summarized by Table 5 and Figure 6. Initially, Table 5 corrob-590

orates the results from Section 5.2 highlighting the average runtime for each
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algorithm. Both GPUACS algorithms (AHP and TOPSIS) executed in less

than 7 seconds. On this scenario, TOPSIS runtime outperformed all comparing

algorithms with an acceleration of approximately 22x in the foremost case.

Algorithm MCDM configuration Runtime (s)

Consolidation - 79.38

HA - 47.80

AHP Network QoS 6.90

TOPSIS Network QoS 3.48

Table 5: Average runtime for AHP, TOPSIS, Consolidation and HA algorithms.

Figure 6 deepens the discussion by summarizing the impact of network and595

server fragmentation on requests delays. Each time a request is not allocated

by the scheduler (lack of DC resources to guarantee QoS), it is delayed for

next discrete simulation event, and the results demonstrate the impact of DC

fragmentation on requests delays. A consolidation algorithm tends to decrease

servers fragmentation and consequently the network fragmentation (a shortest600

path algorithm), while a HA approach tends to spread resources atop the DC,

activating multiple servers (the steps on Figure 6) and composing longer net-

work paths. The consolidation algorithm sequently activate the servers, while

the HA can allocate a DC server for hosting a single container. Thus, the consol-

idation algorithm delays multiple requests even for an under-utilized DC (lower605

fragmentation), in which the HA gradually increases the delay.

Both GPUACS algorithms decreased the requests delays even for a frag-

mented DC (using almost all servers). The network QoS impact is observed

on network fragmentation. While consolidation and HA algorithms have well-

defined profiles, AHP and TOPSIS are malleable approaches. In short, GPUACS610

accelerate the network fragmentation (between 30% and 40%) to guarantee the

QoS requirements. While TOPSIS delayed some requests with lower fragmen-

tation values, the AHP algorithm keeps allocations without delay until DC
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Figure 6: The impact of server and link fragmentation on requests delay.

resources are saturated. The MCDM methods outperformed the traditional

consolidation and high availability algorithms guided by the network QoS re-615

quirements. Specifically, a distributed application scheduled with GPUACS

will receive network QoS guarantees during all runtime, acting on a critical

container’s management challenge [5] and improving the user’s perspective.

5.4. Evaluation of time-constrained requests

This set of experiments investigates the application of GPUACS to sched-620

ule time-constrained jobs. As indicated by the previous analysis, AHP outper-

formed TOPSIS for the scenarios analyzed (Sections 5.2 and 5.3), and is selected

as the GPUACS MCDM for the evaluation of time-constrained requests, con-

figured with Network QoS weights (from Table 3). As detailed in Figure 3,

this scenario comprises a deep analysis comparing GPUACS with a well-know625

scheduling algorithm and three requests configurations. GPUACS is compared

with Easy Backfilling (EB), a traditional algorithm in the literature already

applied in commercial schedulers (e.g., IBM, CTC SP2, HPC2N, KTH, LLNL

Thunder) [2]. In order to extend ours analysis, two objective functions are given

for EB, consolidation and HA (Section 5.3). Aiming a fair comparison regarding630

the network QoS requirements, the shortest path algorithm was applied after the

30



execution of EB. Moreover, two modes of requests management are discussed:

with and without requests resubmissions (Section 4.5). In short, the scenario

using resubmission re-queues unallocated requests to be later reprocessed by the

scheduler (when DC is ready to guarantee the QoS requirements).635

The containers requests are based on CPU, RAM, and network bandwidth

configurations extracted from real applications [25, 26]. CPU and RAM are

normalized and selected in intervals, [0.1, 1] and [25MB, 1GB], respectively,

while bandwidth is defined by a strict minimum QoS configuration selected

from 0.16Mbps, 5.09Mbps, 0.71Mbps, 4.08Mbps, 2.95Mbps, and without con-640

nectivity. A set of 35, 000 requests composed of 4 containers were uniformly

generated based on those previous selected values and intervals. Each request

executes up to 200 simulation events, and all scenarios are analyzed using the

same interval of simulation. Finally, the DC is constructed as k = 12 Fat-Tree.

The time-constrained analysis is decomposed into three scenarios: (i) Stan-645

dard requests: this scenario analyzes the traditional requests as explained in

Section 3.1. Each request specifies a walltime that is perfectly executed, with-

out preemption or early terminations (i.e., process errors or anticipated suc-

cessful executions). Moreover, requests are deadliness. (ii) Deadline-critical

requests: each request specifies a hard execution deadline. Besides executing650

a QoS-aware allocation, the schedulers (GPUACS and EB) must respect the

walltime and deadline information, which are precisely specified on the request.

(iii) Deadline-critical and early-ended requests: this scenario represents a com-

plex execution composed of hard deadlines and inaccurate walltime prediction.

It is worthwhile to mention, the walltime is a user-specified information that655

only indicates to the orchestrator an estimation on execution time.

The results are summarized by Table 6 and Figures 7- 9. While Table 6

informs the Acceptance Ratio (AR) for all scenarios, the network fragmentation,

CPU footprint and scheduling delay (events) are summarized by Cumulative

Distribution Function (CDF) graphs. In the following, each workload scenario660

is individually analyzed.
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Requests Resubmission Algorithm AR

Standard

Without

EB HA 52.40%

EB Consolidation 55.14%

GPUACS AHP 97.05%

With

EB HA 100.00%

EB Consolidation 100.00%

GPUACS AHP 100.00%

Deadline-critical

Without

EB HA 69.58%

EB Consolidation 56.49%

GPUACS AHP 98.68%

With

EB HA 20.55%

EB Consolidation 29.23%

GPUACS AHP 100.00%

Deadline-critical

and early-ended

Without

EB HA 45.69%

EB Consolidation 59.15%

GPUACS AHP 97.43%

With

EB HA 32.10%

EB Consolidation 100.00%

GPUACS AHP 100.00%

Table 6: Summary of EB and GPUACS acceptance ratio (AR).

5.4.1. Standard requests

The execution without resubmission of requests represent a traditional batch

allocation. In this sense, the Acceptance Ratio (AR) metric is used to quan-

tify requests that were successfully scheduled. Results from Table 6 indicate665

GPUACS AHP allocated almost all requests, while EB achieved 55.14% with

consolidation technique. In addition, EB and GPUACS AHP allocated all re-

quests when resubmission is allowed. The impact of both methods are deeply

32



illustrated by Figure 7.
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Figure 7: Results for EB and GPUACS AHP for standard requests.

The network fragmentation, CPU footprint, and delay are given summa-670

rized by Figures 7(a), Figures 7(b), and Figures 7(c), respectively. Regardless

the objective function (consolidation or HA), EB has lower AR values, and con-

sequently reduce the DC usage, as observed by network fragmentation and CPU

footprints. In turn, GPUACS AHP has competitive AR values with and without

resubmission, consequently increasing the DC usage. It is worthwhile to men-675

tion that even for high AR values (with and without resubmission), GPUACS

AHP drastically reduce the requests delay. EB with HA obtained the minimum

total delay, however it allocated approximately half of the requests.

5.4.2. Deadline-critical requests

A strict time limit requirement is forced for each container uniformly se-680

lected in the [proci, proci + 0.1 × proci] interval, for deadline-critical requests.

On this scenario, Table 6 shows only GPUACS AHP accepted all requests dur-

ing the simulation interval, while EB HA achieved 69.58% and EB consolidation

obtained 29.23% without and with requests resubmission, respectively. The ef-

ficiency of MCDM is evident in this scenario. When analyzing multiple options685

(requests and DC resources) simultaneously, a better use of DC is obtained, as

indicated by Figures 8(a), 8(b), and 8(c). Moreover, the main reason for EB re-

jection of requests is the inability to jointly analyze containers and network QoS

requirements. Even selecting appropriated DC servers to host containers, EB
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with a shortest path approach fails to found DC paths given the QoS objectives.690
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Figure 8: Results for EB and GPUACS AHP for deadline-critical requests.

It is worthwhile to mention the lightly increase on requests delay for GPUACS

AHP when comparing both submission methods. Even increasing on 2.57% on

AR, the resubmission of requests increased the scheduling delay (Figure 8(c)).

5.4.3. Deadline-critical and early-ended requests

Besides the deadline configuration induced on Subsection 5.4.2, an early end695

for each container is uniformly selected in the [0.7 × proci, proci] interval. An

interruption on tasks execution can be originated from different reasons: the

task successfully ended, the process was interrupted by an error, the data which

would be processed is not available, among others. This scenario brings the

problems from real multitenant DCs [27].700

The interruption of process execution opens the opportunity to schedule

more requests, as observed by the AR values when compared with only deadline-

critical scenario (from Table 6). In this sense, EB consolidation and GPUACS

AHP allocated all requests when resubmission is allowed. Without resubmission

of requests, GPUACS AHP rejected only 2.57% of requests, while EB Consoli-705

dation allocated 59.15% at most. The quality of EB and GPUACS AHP alloca-

tions is evidenced by Figure 9. Although both algorithms allocated all requests,

GPUACS AHP decreases the total delay (Figure 9(a)). However, GPUACS

AHP requires more CPU usage (footprint from Figure 9(b)) and more network

resources (the fragmentation from Figure 9(a)). This scenario makes evident710
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the dichotomy between execution delay and DC resources usage. Finally, while

the current experiment is based on Network QoS weighting scheme, GPUACS

MCDM methods can be configured following the DC administration objectives.
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Figure 9: Results for EB and GPUACS AHP for deadline-critical and early-ended requests.

5.5. Priority queues evaluation

For complementing the discussion on containers requests allocation, we in-715

vestigate the performance of GPUACS AHP when different queueing policies

are applied for ordering the requests (the policies are presented in Section 3.3

and the notation is summarized in Table 4). The set of standard requests were

submitted for the seven queueing scenarios, without the resubmission method

(and consequently without the delay metric).720

Table 7 and Figure 10 summarize the Acceptance Ratio, network fragmenta-

tion and CPU footprint, respectively. While GPUACS AHP demonstrate a low

variation on AR scheduling almost all requests, EB, regardless of the objective

function (HA or consolidation), varies from 52.40% for FCFS up to 76.03% for

SPF. This fact is justified by the nature of the MCDM algorithm that exten-725

sively compares candidates and criteria. In short, regardless the queuing policy,

SPF is the preferred option for EB algorithm, with SQFMin emerging as the

indicated option for GPUACS AHP.

Figure 10(a) summarizes the network fragmentation while Figure 10(b) in-

dicates the CPU footprint for all algorithms and queue policies. Regardless the730

policy, GPUACS AHP tends to quickly increase the network usage balancing
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Queuing policy Algorithm AR

FCFS

EB HA 52.40%

EB Consolidation 52.40%

GPUACS AHP 97.05%

SPF

EB HA 76.03%

EB Consolidation 67.53%

GPUACS AHP 96.25%

SAFMin

EB HA 60.33%

EB Consolidation 55.77%

GPUACS AHP 96.25%

SAFMax

EB HA 60.33%

EB Consolidation 55.77%

GPUACS AHP 96.25%

SQFMin

EB HA 56.02%

EB Consolidation 57.61%

GPUACS AHP 97.15%

SQFMax

EB HA 56.02%

EB Consolidation 57.63%

GPUACS AHP 97.15%

SDAF

EB HA 60.33%

EB Consolidation 55.77%

GPUACS AHP 96.25%

Table 7: Summary of GPUACS AHP and EB acceptance ratio with different queueing policies.

the load atop multiple links (high fragmentation). The network fragmentation

is lower for both EB algorithms. However, Table 7 indicates that fewer requests

are scheduled. The same rationale is applied for CPU footprint. For improv-
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ing the AR, the MCDM of GPUACS gradually increases the CPU usage. In735

conclusion, while the queue policy has a large impact on EB performance [2],

the large number of comparisons performed by the MCDM AHP offers better

results, regardless the queue policy.
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Figure 10: Results for EB and GPUACS AHP with different queueing policies.

5.6. Discussion and Limitations

In order to deepen the discussion on the experimental evaluation, we present740

the key aspects of GPUACS as well as some identified limitations. Initially, the

importance of developing a modular architecture (Figure 2) for GPUACS proved

to be appropriate in a perspective of the potential configuration options for the

scheduling algorithms (MCDM, EB, or any future implementation), objective

functions (e.g., MCDM weighting parameters, consolidation, high availability),745

and priority queues. A specific analysis on GPUACS prototypes based on AHP

and TOPSIS indicated that the challenges previously identified (jointly contain-

ers and network scheduling, time-constrained requests, and DC dimensionality

and scheduler scalability) were covered paving the road for further discussions.

The scalability achieved by GPU implementations (Section 5.2) appeared as a750

useful alternative to implement centralized schedulers. However, to obtain op-

timal results, the AHP and TOPSIS codes must be adapted and pruned to fit
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the GPU memory specification.

The joint containers and network requirements allocation is efficiently ad-

dressed by MCDM. A simple introduction of the bandwidth and latency-755

sensitive (expressed as pods) requirements increased the allocation ratio. How-

ever, an evident limit of any MCDM configuration is the arbitrary and subjective

configuration of weighting parameters. Thus, for GPUACS AHP and TOPSIS

prototypes, the weighting configuration were empirically defined, but it is essen-

tial to emphasize they must be systematically refined to meet the objectives of760

the DC administrator. It is worthwhile to mention that the GPUACS prototype

was based on two consolidated MCDM methods, AHP and TOPSIS, however,

the modular architecture is prepared to be extended. In addition, the selection

of an appropriated queuing policy is essential for traditional algorithms (i.e, EB

with consolidation, or HA objective functions), while it is smoothed and sim-765

plified by the time-constrained and MCDM analysis performed by GPUACS.

Finally, GPUACS was evaluated considering five metrics: execution time,

scheduling delay, DC fragmentation and footprint, and acceptance ratio. Al-

though the analysis of data for all metrics has indicated that GPUACS improved

the scheduling in the perspective of DC administrator and users, a future evalu-770

ation should consider the QoE of distributed applications (application-oriented

metrics).

6. Considerations and future work

Usually, containers orchestrators apply simple scheduling algorithms to op-

timize the performance and to soften (or avoid) the scalability barriers. Most775

algorithms analyze few allocation criteria, and usually optimize only one objec-

tive function due to the complexity of the problem (NP-Hard). It is a fact there

is a dichotomy between the response time to perform the allocation and the

approximation of the optimal solution. Moreover, the network requirements are

not considered as critical resources by most orchestrators, with a lack of sched-780

ulers performing the joint scheduling of containers, communication resources,
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and time-based constraints.

Based on this scenario, we addressed relevant aspects through the discussion

of the use of the multicriteria approach accelerated by GPUs to carry out con-

tainer scheduling taking into account network and time constraints. Specifically,785

we proposed and evaluated GPU Accelerated Containers Scheduler (GPUACS),

a new approach to schedule requests atop large-scale DCs.

Our experimental analyzes demonstrated the sensitivity that GPU-tailored

MCDM methods have to schedule containers requests considering relevant cri-

teria identified on the problem formulation. As future work, we envisage the790

implementation of a load balancing module, allowing to optimize the resources

already allocated in the DC, as well as a fault tolerante implementation, allowing

the scheduler to recover from serious failures. Finally, a future implementation

with multiple GPUs requires adaptions to fully explore the memory bandwidth.
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