
Int. J. Grid and Utility Computing, Vol. 13, No. 6, 2022 607 

Copyright © 2022 Inderscience Enterprises Ltd. 

Energy-based cost model of containers provisioning 
on clouds 

Aline S. Moreira, Charles C. Miers,  
Guilherme P. Koslovski and Maurício A. Pillon* 
Graduate Program in Applied Computing,  
Santa Catarina State University,  
Joinville, Santa Catarina, Brazil 
Email: aline.moreira@edu.udesc.br 
Email: charles.miers@udesc.br 
Email: guilherme.koslovski@udesc.br 
Email: mauricio.pillon@udesc.br  
*Corresponding author 

Nelson M. Gonzalez 
IBM Watson Research Centre,  
Yorktown Heights, New York, USA 
Email: nelson@ibm.com 

Abstract: Cloud computing revolutionised the development and execution of distributed 
applications by providing on-demand access to virtual resources. Containerisation simplifies 
management and support of the cloud infrastructure and applications. Clouds typically are 
consumed in a pay-as-you-go pricing model. However, when applied to containerised 
environments, such traditional models do not consider resource utilisation values, leading to 
inaccurate estimates. Moreover, these models do not consider energy consumption, a dominant 
component of the data centre’s total cost of ownership. This paper proposes Energy Price Cloud 
Containers (EPCC), a cost model based on energy consumption that accounts for containers’ 
effective resource utilisation. We compare EPCC with AWS Fargate to highlight the benefits of 
using an energy-based pricing model. Thus, by comparing the cost of an application running 
using AWS Fargate with the estimated cost of that application in nome, it is possible to identify 
the benefits of using an energy-based pricing model. The weekly costs estimated when running 
computational resources at nome vary between US$ 2.31 and US$ 10.59. In contrast, when 
estimating the same amount of resources on AWS Fargate, the costs vary between US$ 2.71 and 
US$ 29.94. Nome resulted in a cost reduction of up to 35%. 

Keywords: pricing model; containers; cloud computing; energy consumption.  

Reference to this paper should be made as follows: Moreira, A.S., Miers, C.C., Koslovski, G.P., 
Pillon, M.A. and Gonzalez, N.M. (2022) ‘Energy-based cost model of containers provisioning on 
clouds’, Int. J. Grid and Utility Computing, Vol. 13, No. 6, pp.607–623. 

Biographical notes: Aline S. Moreira received her Master’s degree from Santa Catarina State 
University (UDESC) and Bachelor’s degree from the Educational Society for Santa Catarina 
(UNISOCIESC). 

Charles C. Miers is Professor at Santa Catarina State University (UDESC) in Joinville/SC and 
Member of the LabP2D (Laboratory of Parallel and Distributed Processing) of UDESC which 
has a private OpenStack cloud. He received his Doctorate degree in Computer Engineering from 
University of São Paulo (USP), the Master’s degree in Computer Science from the Federal 
University of Santa Catarina (UFSC) and Bachelor’s degree in Data Processing from the Santa 
Catarina State University. He was Security Consultant at LockNet Security Solutions, in the 
Software Area, from 1999 to 2003, having worked on projects of national companies (private and 
public) and multinationals. 

Guilherme P. Koslovski is a Professor at Santa Catarina State University (UDESC) in 
Joinville/SC, and Member of the LabP2D (Laboratory of Parallel and Distributed Processing) of 
UDESC which has a private OpenStack cloud. He received his Doctorate degree from The École 
Normale Supérieure de Lyon at Lyon/France, Master’s degree from Federal University of Santa 
Maria (UFSM) and Bachelor’s degree in Computer Science from the UFSM. 

 



608 A.S. Moreira et al.  

Maurício A. Pillon is Professor at Santa Catarina State University (UDESC) in Joinville/SC and 
Member of the LabP2D (Laboratory of Parallel and Distributed Processing) of UDESC which 
has a private OpenStack cloud. He received his Doctorate degree from the Institut National 
Polytechnique of Grenoble at France, Master’s degree from Pontifical Catholic University of Rio 
Grande do Sul (PUC-RS) and Bachelor’s degree in Informatics from the Regional University of 
the Northwest of the State of Rio Grande do Sul. He also received his Post-doctorate degree from 
the Federal University of Rio Grande do Sul (UFRGS), conducted in the Research Group – 
Parallel and Distributed Processing Group (GPPD). 

Nelson M. Gonzalez received his BSc, MSc and PhD degrees in Electrical/Computing 
Engineering from the University of Sao Paulo, Escola Politecnica (Poli-USP), Brazil in 2011, 
2013 and 2015, respectively, and Post-doctoral degree from IBM Thomas J. Watson Research 
Centre. Currently, he works at the IBM Thomas J. Watson Research Centre in Yorktown Heights, 
New York, USA. 

 

 

1 Introduction 

Virtualisation technologies are in constant evolution. 
Containerisation, based on OS-level virtualisation (Sharma  
et al., 2016; Souppaya et al., 2017), provides scalability and 
flexibility to develop and deploy applications while 
simplifying management and adapting to customers’ needs. 
Cloud services leverage virtualisation technologies at scale. 
Business models are based on dynamic on-demand resource 
allocation, pay-as-you-go pricing and resource consumption 
(Bindu et al., 2018). Several cloud providers offer elastic 
virtualisation services, e.g., Amazon AWS, Microsoft Azure, 
Google Cloud, Rackspace, Heroku (Begum and Khan, 2011). 
An increasing number of organisations rely on cloud 
computing as their core pool of resources to serve their own 
customers. Cloud-related expenses represent a considerable 
part of the IT organisation budget (Columbus, 2017). A 
precise specification of resources to be allocated and 
provisioned is crucial to improve performance and costs 
while addressing each service’s complexities (Bittencourt  
et al., 2018; Wu et al., 2019). 

IaaS providers adopt various pricing models based on 
monthly contracts, licenses and SLA policies. For example, 
Amazon, Microsoft Azure and Google Cloud Platform offer 
pay-as-you-go services charging a predetermined price for 
each resource, per task or by the number of calls of a service 
(Wu et al., 2019). From the cloud provider perspective, DC 
energy consumption stands out among all operational costs 
(Danilak, 2017). This directly impacts the costs seen by 
customers in the cloud service catalogue. Virtualisation 
contributes to efficient energy management through resource 
consolidation and isolation techniques, improving DC 
resource utilisation (Comerford, 2015). Compared to 
traditional hypervisor-based virtualisation, containerised 
infrastructures demonstrate even higher efficiency by sharing 
the available physical resources and the OS kernel. 

Virtualisation technologies and application settings 
influence the utilisation level of computational resources such 
as CPU, memory, networking, disks, etc. For instance, 
bandwidth and latency requirements may come from different 
network settings used by an application (i.e., NAT, bridge, 
host-only (Danilak, 2017; Mentz et al., 2020)) as well as from 
the properties of the workload. Consequently, these aspects 

also have a direct impact on energy consumption. Cloud 
customers typically face a trade-off between reducing resource 
consumption (i.e., cost) and improving performance. From the 
customer perspective, reducing the energy consumption is not a 
priority since there is no transparency about how energy 
resources are consumed or any financial reward (Souppaya  
et al., 2017; Hinz et al., 2018; Kurpicz et al., 2018). 

We propose nome brings energy efficiency into the 
equation by defining an adaptable pricing model that accounts 
for energy consumption as a resource utilisation function, not 
just fixed time-based and allocation-based quotas. This 
provides the means to establish a clear financial incentive to 
save energy since it directly ties energy consumption to service 
costs. Our assessment of the impact of container utilisation on 
energy consumption reveals that each resource has a different 
impact on the final estimates. Energy consumption rapidly 
increases proportionally to the percentage of CPU utilisation. In 
contrast, memory and network observe a milder increase. 
Storage resources typically display stable energy consumption, 
even for I/O-intensive applications. This fine-grained analysis 
led to the stratification of containers’ energy consumption. 
Nome formalises these components in a precise and extensible 
pricing model. 

The contributions of this work are threefold: (i) an 
energy-aware cost model to containers; (ii) stratification of 
container energy consumption and (iii) a comparison of 
energy consumption among servers, virtual machines and 
container environments. 

We compare estimated energy costs from AWS Fargate 
with nome cost model. AWS Fargate follows a pay-as-you-go 
charging model that does not consider the resource utilisation 
levels of leased containers. Since the AWS Fargate invoice 
comprises all business costs, we consider that AWS Fargate 
energy costs represent 5%, 10% and 15% of the total business 
costs (Hinz et al., 2018). 

Nome estimated weekly values vary between US$ 2.31 
and US$ 10.59, while AWS Fargate US$ 2.71  and  
US$ 29.94 , a reduction of up to 35.39%. The AWS Fargate 
account was only cheaper than our nome model when we 
estimated that the cost of energy in the AWS Fargate model 
represents 5% of the total value of the contracted service. 
However, when the container is allocated and remains for a 
long period without physical resource demand, the server 



 Energy-based cost model of containers provisioning on clouds 609 

usage is set to idle. The entire allocation period is counted 
with the total contract for AWS Fargate, even the server 
usage idle period. Thus, a container application is hampered 
by the AWS Fargate cost model if the allocation resource is 
overestimated. 

This paper is organised as follows. Section 2 addresses 
background and prior work on cost models for virtualised 
resources. Section 3 describes and applies the method to 
provide a breakdown of energy consumption based on 
container application resource utilisation. Section 4 presents 
nome. Section 5 presents a case study to exercise EPCC using 
the AWS Fargate pricing table. Section 6 concludes and 
proposes future work. 

2 Cost models for virtualised resources 

The consolidation of computational resources directly 
influences the DC energy reduction. Organisations have been 
migrating their services to the cloud computing service model 
since its emergence. Organisations still might maintain their 
DC to ensure strict control of management policies or because 
of legacy software. Although the concentration of physical 
resources on large DC reduces global energy consumption 
(Bawden, 2016), they still are an energy bottleneck. 

In 2015, the energy consumption reached 416  TWh with 
a forecast to double every four years (Bawden, 2016). In the 
USA, the DC consumed more than 90  TWh (Danilak, 2017). 
The required energy supply system causes an economic and 
environmental impact. Thus, green clouds, renewable energy 
supplies and cost models have become interesting topics for 
scientific research (Hu et al., 2013; Pandikumar et al., 2012; 
Jain et al., 2013; Zhang et al., 2018; Garg and Buyya, 2012; 
Sharma et al., 2017). 

Energy cost represents about 50%  of the DC operating 
expenses (Guitart, 2017; Comerford, 2015). Providers 
constantly look for new methods, equipment and practices to 
improve their DC energy efficiency. In contrast, cloud tenants 
typically are not aware of the energy consumed by their 
applications, nor are they rewarded for improving it. 

2.1 DC servers virtualisation 

Virtualisation allows servers to be consolidated, therefore 
improving energy usage and simplifying DC management 
(Kominos et al., 2017). Although it exists since the mid-
1960s, virtualisation has seen several improvements specially 
after its adoption by cloud infrastructures to transparently 
provide resources such as CPU processing, storage and 
virtual environments. This allows IaaS providers to grant 
access to remote, configurable, and shared sets of computing 
resources. IaaS providers can efficiently afford and make 
resources available to their tenants while minimising 
management, communication and energy costs (Mell et al., 
2011; Hammadi and Mhamdi, 2014). 

There are two primary technologies used to implement 
virtualisation: (i) hypervisor-based, which requires each VM 
to load a complete OS (leading to higher overhead) and  
(ii) container-based, a lightweight approach that shares the 
host OS kernel among all instances (Souppaya et al., 2017). 

Containers provide an abstraction at the application 
layer by packaging the code and the necessary dependencies 
for its operation (Da Silva et al., 2018). Figure 1 presents 
some of these virtualisation environments adopted by 
organisations, including bare metal (a), VM Type-1  
(b), container on bare metal (c) and container atop VM  
(d). Using containers does not restrict the use of VM; in 
fact, it allows the encapsulation of applications in several 
layers (Estrada et al., 2014). Docker is one of the most 
prominent containerisation technologies. Docker started in 
2016, reaching U$761 million in market value and this 
market could grow more than 35 times up to 2020 which 
would represent U$27 billion (Kim et al., 2018). Gartner 
(Moore, 2020) expects that up to 15% of enterprise 
applications will run in a container environment by 2024, up 
from less than 5% in 2020, hampered by application 
backlog, technical debt and budget constraints. 

The transition from internally hosted services to cloud 
computing can result in 4–5x improvement in resource 
utilisation efficiency (Wu et al., 2019) – up to 6x with 
container-based virtualisation. The adoption of virtualisation 
is, therefore, a solid technological trend – but what about 
energy? How to factor in economic aspects such as supply 
and demand while encouraging tenants to use DC resources 
consciously? 

2.2 Cost models for VM 

The main pricing models used by cloud providers consider 
value, supply and market. The value aspect focuses on 
customer demand, while the supply aspect focuses on cost. 
The market-based model seeks a balance between supply and 
demand. Cloud providers offer a vast range of services 
comprising infrastructure models and ways to allocate, use, 
and reserve resources. This evolution was naturally followed 
by creating cost models suitable to an extensive range of 
tenants with different profiles (Wu et al., 2019). However, 
despite constant improvements to products and services, 
current cost models still have gaps. 

Figure 2 presents the evolution of AWS cost models. The 
X-axis represents the number of sales for each service model, 
q . The Y-axis represents the service pricing per unit, p . 

Over the years, AWS has designed new service and cost 
models focusing on the market and operating costs to fill 
provisioning gaps. We identify gaps in cloud computing in 
two distinct moments: (i) in its early days (2009), when  
AWS concentrated its resources on centralised DC 
infrastructures and (ii) in current days (2019), when AWS 
offers geographically distributed and fully decentralised 
infrastructures. Supply and demand was the foundation of the 
core services, providing discounts up to 90% compared to the 
same server in the AWS standard offer model. In 2015, AWS 
started offering a specific model for executing fault-tolerant 
workloads. In the same year, AWS products portfolio 
included two other pricing models for the spot service: spot 
blocks, in which instances have a specified duration; and spot 
fleets, sets of spot instances that run based on specified 
criteria. This flexibility allowed tenants to specify their 
resource needs with precision, reducing the resources’ 
underutilisation (Wu et al., 2019). 

 



610 A.S. Moreira et al.  
  

Figure 1 Common approaches for providing computational resources to an application 

 
 

Figure 2 reveals that AWS had notable success in reducing 
under provisioning – white areas in the diagrams. 
Competition from other providers such as Microsoft and 
Google led to creating of new and more efficient offerings. 
The existence of low-cost instances opened a new market 
niche for customers with relaxed requirements. From the 
providers’ viewpoint, this increased the DC utilisation rate 
by using of idle resources. 

Although the evolution in service offerings is evident, 
there still are gaps to be addressed. This evolution is guided 
by providers’ interests, policies and perceptions of cost and 
service package models. The information from tenants 
usually is disregarded, e.g., the optimisation of their 
applications for lower energy consumption or politically 
correct actions, such as environmental preservation. 
Rewarding tenants for being aware of their energy  
 

consumption can be a strong motivator for optimisating 
applications. This paper highlights the need to fill the price 
gap per reservation, described in Figure 2 by the green 
hatched area in the Present years diagram. 

2.3 Related work 

There are several researches in the specialised literature 
regarding energy consumption in computational 
environments. These studies examine different environments 
(e.g., bare metal servers, VM, containers), manipulate various 
resources (e.g., CPU, network, memory, storage) in addition 
to having several purposes (e.g., monitoring tool, 
predictions). Table 1 summarises the related work. In short, 
the proposals have different characteristics, but none of them 
meet all the resources addressed by nome. 

Figure 2 AWS costs models evolution  

 

Source: Adapted from Wu et al. (2019). 

 



 Energy-based cost model of containers provisioning on clouds 611 

Table 1 Models and tools from the perspective of energy consumption of VM in DC or IaaS cloud providers 

Author Objective Environment Resources Objective 

Hinz et al. (2018) Analysis of energy costs in VM and hypervisors IaaS CPU, network traffic Pricing 

Kurpicz et al. (2018) Proportional energy cost model in environments 
based on cloud providers 

IaaS CPU Pricing 

Bhattacharya et al. 
(2013) 

Energy consumption measurement tool DC CPU, network, memory and 
storage 

Monitoring 

Zakarya and Gillam 
(2018) 

Relates the energy efficiency of workloads to 
CPU consumption 

Cloud providers CPU and memory Monitoring 

Brondolin et al. 
(2018) 

DEEP-mon hardware energy monitoring of 
containers 

OS CPU, network and memory Monitoring 

Leitner et al. (2016) Container deployment cost model IaaS and PaaS CPU, memory, and storage Pricing 

nome Container cost model based on energy 
consumption 

IaaS CPU, network, memory and 
storage 

Pricing 

 
Hinz (2018) introduced pricing models for IaaS clouds 
focusing on VM and guided by energy consumption. PSVE 
bases its pricing model on identifying the VM individualised 
energy consumption through the hypervisor, accounting the 
resources individually and collectively. Collective costs are 
prorated by VM according to the number of CPUs allocated 
in the period (Hinz, 2018). This benefits the customer’s 
lowest cost and the providers’ PTC and goes to green IT 
actions. However, PSVE does not consider the relevance of 
containers in the computational clouds and restricts the 
proposed model only to VM. EPAVE (Kurpicz et al., 2018) is 
a pricing model for accounting VM dynamic consumption 
and the proportional static cost of the cloud infrastructure, 
assigning general energy costs per VM. EPAVE and PSVE 
differ in the energy costs division policy and do not consider 
the network traffic energy consumption. A set of techniques 
to measure energy consumption was described by 
Bhattacharya et al. (2013) and (Zakarya and Gillam, 2018). 
Regarding the workload impact on energy consumption, 
Zakarya and Gillam (2018) claimed that the impact on energy 
efficiency varies according to CPU models. 

Finally, two works stand out associated with 
virtualisation-based on OS and containerised applications:  
(i) the DEEP-mon tool which monitors the CPU, network and 
memory resources at the level of OS (containers) to measure 
energy consumption (Brondolin et al., 2018); and (ii) a 
pricing model for deploying cloud applications based on 
micro-services (Leitner et al., 2016). A research carried out in 
2019  shows that more than 34%  of companies that invest 
over $100US  thousand in technologies are adhering to the 
container environments atop bare metal servers, migrating the 
applications of VM for containers (DIAMANTI, 2019). 
These companies aim to increase their performance, reduce 
infrastructure complexity, improve flexibility and reduce 
costs. Containers are efficient, allowing operators to do more 
with less and manage critical applications with high 
availability. The usage of containers by companies ranges 
from modernising legacy applications to analysing big data 
(DIAMANTI, 2019). Such research highlights the growing 
impact of containers for organisations, attesting the scientific  
 
 

gap in the containers pricing models study for cloud providers 
guided by energy consumption (one of the motivations of  
this work). 

Cloud providers have been improving their service 
offered over the years, filling the gaps of underutilised 
processes and seek to maximise the energy efficiency in their 
DC (Wu et al., 2019). However, on the client side, the 
providers’ efforts fall short in the cost models offered. The 
cost models offered by providers do not provide economic 
benefits to their tenants to develop energy-conscious 
applications. A better cost model would benefit not only the 
customer’s final cost but also environmental preservation. 
This action reflects the reduction of PTC of providers making 
the offer convenient for the provider and their tenants. The 
DC must offer cost models that consider the energy 
consumption in their pricing, as proposed by PSVE (Hinz et 
al., 2018). However, this model only includes hypervisor-
based environments, excluding containers in bare metal and 
therefore having lower support for containers per physical 
server in VM environments (DIAMANTI, 2019). Moreover, 
providers offer container-based services priced by resource 
allocation, not utilisation. This pricing and provisioning gap 
requires an appropriate cost model for containers focused on 
energy consumption so that tenants are encouraged to develop 
energy efficient applications. State of art in energy-aware 
consumption reinforces the importance of a pricing model for 
the IaaS context and energy monitoring methods for 
containerised applications. The focus of this work is to 
identify and address this gap regarding the energy-aware 
containerisation-based pricing model. 

3 Energy consumption analysis 

This section presents an analysis of the energy consumption 
of computational resources. The objective is to establish a 
baseline to quantify and compare each resource’s energy 
consumption impact (CPU, memory, storage and network) in 
bare metal, VM and container-based setups. 



612 A.S. Moreira et al.  

3.1 Experimental protocol 

We elaborated the experimental environment using  
the Grid5000 platform (GRID5000, 2020) Grenoble  
site (https://www.grid5000.fr/w/Grenoble:Hardware). The 
selected cluster, Yeti, comprises four Dell PowerEdge R940 
computing nodes with Intel Xeon Gold 6130 (Skylake, 
2.10GHz, 4 CPUs/node, 16 cores/CPU), 768Gb RAM and an 
Intel Ethernet Controller X710 for 10GBE SFP+. A  
set of non-intrusive wattmeters monitors Yeti’s energy 
consumption. The software comprises three layers: (i) Debian 
10 GNU/Linux bare-metal installation; (ii) KVM hypervisor 
3.1.0 and (iii) Docker 19.03. 

We used four benchmarks to analyse energy 
consumption. Each benchmark applies a different workload 
to a specific resource. StressNG applies a configurable 
workload to the server’s CPU (King, 2019). Stream performs 
vector calculations to saturate the server’s memory and CPU. 
The user defines the amount of memory consumed, CPU load 
and a number of processes to be allocated (McCalpin et al., 
1995). Fio (flexible I/O) executes asynchronous read/write 
storage operations (Axboe, 2017). Finally, iperf3 generates 
network traffic to stress bandwidth usage, allowing parallel 
communication flows between server and client (Mortimer, 
2018). These benchmarks allow us to observe each resource’s 
behaviour and its correlation to energy consumption  
(Li et al., 2017). 

We quantify the energy consumption of each physical 
resource for each active container. Our baseline is the bare 

metal setup (see Figure 3(a)). This baseline is compared to 
three other scenarios: (i) VM, (ii) Docker container and  
(iii) Docker container inside VM, as shown in Figures 3(b)  
to 3(d). Each benchmark was executed with the same 
workload 10  times. 

3.2 CPU analysis 

Figure 4(a) illustrates the energy consumption behaviour 
according to the increase in CPU usage. The X-axis represents 
the number of threads (CPUs) assigned to the benchmark. 
The Y-axis represents the energy consumed (in joules) during 
the experiment. The idle consumption is around 175 J  
(1 J standard deviation) for all platforms. For each platform, 
we increased the number of benchmark threads from 1 to 128. 
Running one thread doubles energy consumption compared to 
idle. For 128 threads, energy consumption increases by  
more than 4x. Also, VM and container atop VM platforms 
consume more energy than bare metal and containers-only. 
Container atop VM consumption is slightly higher than VM 
only, except when the server is saturated. The energy 
consumption gap among platforms widens as CPU usage 
increases, mainly due to the management performed by the 
KVM hypervisor. Using only 1 CPU, the difference in 
consumption between environments is less 2%. For 8 CPUs, 
the difference is higher than 9%. This reveals that CPU usage 
is the essential component for a cost model; two customers 
may pay the same price for a service, but one consumes 3x 
more energy than the other. 

Figure 3 Experimental environment 

 

 

 

 

 

 

 



 Energy-based cost model of containers provisioning on clouds 613 

Figure 4 Physical resource energy consumption 

 

3.3 Memory analysis 

Figure 4(b) shows the results for the experiments with 
memory utilisation. X-axis represents memory utilisation in 
GB. Y-axis indicates energy consumption in joules. The 
experiments with STREAM (McCalpin et al., 1995) use 
seven memory workloads processed by only one thread. We 
compare the baseline (idle system) to six memory utilisation 
values: 1 GB, 50 GB, 100 GB, 150 GB, 200 GB and 250 GB. 
The energy consumption curve is visually similar to CPU but 
with a narrower range, up to 525 J. The experiments with 1 
GB show an energy consumption increase between 375 J and 
400 J. Increasing memory utilisation to 50 GB, however, does 
not drastically change energy consumption. Also, subsequent 
experiments increase energy consumption by 7% on average 
compared to the previous one. This reveals that, although 
memory utilisation does influence energy consumption, its 
impact is not as pronounced as CPU. 

Memory management represents an important resource 
demand for all platforms. The energy consumption gap 
compared to bare metal is more accentuated than the one for  
 

CPU resources. Not even the container setup can compete 
with bare metal. In the worst case, when comparing idle and 
250 GB memory setup used for the container atop VM 
scenario, the energy consumption increases by 214% . 

3.4 Storage analysis 

Consumption on SSD drives tends to be much lower, but 
many DC still have hard drives. Thus, the storage analysis 
focuses on energy consumption from hard disks. Flexible I/O 
(Axboe, 2017) is the storage benchmark selected for the 
evaluation. The storage demand varies from 1 GB to 80 GB. 
In all cases, the benchmark uses only one thread. 

Figure 4(c) depicts the behaviour of energy consumption 
with storage. X-axis represents the storage demand (in GB). 
Y-axis shows energy consumption in joules. Energy 
consumption from storage remains stable from 1 to 80 GB for 
all scenarios. The variation coefficient is around 8.4% . This 
reveals that increasing the storage demand does not impact 
energy consumption. Compared to idle, the energy 
consumption increases 2x. 

 

 



614 A.S. Moreira et al.  

Figure 5 Kubernetes orchestrator’s energy consumption 

 
 

3.5 Network analysis 

The last resource analysed is the network. Network 
management in virtualised environments behave differently in 
terms of energy consumption depending on network type (e.g., 
host, bridge, overlay, macvlan) (Morabito, 2015). In our 
experiments, all scenarios were set up using bridges. We 
executed iperf3 (Mortimer, 2018) to create network workloads 
while evaluating energy consumption. We used two nodes: a 
client and a server. Energy consumption was measured on the 
server-side. We executed iperf3 with several different workload 
configurations: 1 MB, 10 MB, 100 MB, 1 GB and 10 GB. 

Figure 4(d) shows the energy consumption observed 
through the execution of the experiments. X-axis represents 
the bandwidth settings applied in the benchmark. Y-axis 
represents the energy consumed (in joules) by the server. 
We observe a smooth increase in the beginning up until  
10 Mbps – up to 28% compared to idle. For bandwidths 
higher than 100 Mbps, we noted a spike in energy 
consumption, up to 117% compared to idle. Network 
utilisation is, therefore, an important component of energy 
consumption, depending on its utilisation level. 

3.6 Container orchestration analysis 

So far, this section has analysed the influence of physical 
resources in energy consumption. However, large cloud 

environments comprise thousands of containers that  
must be properly managed. Our experiments used a 
Kubernetes (2020) deployment comprising a single dedicated 
master. Even though Kubernetes is a remote service, the 
objective of this section is to see how customer demands 
impact the energy consumption behaviour of the Kubernetes 
master. 

Figure 5 illustrates this behaviour. X-axis represents the 
number of active containers. The Y-axis represents the 
energy consumption in joules. Activating the orchestrator 
corresponds to an increase of 90 J (compared to idle). 
Adding the first container increases energy consumption to 
about 390 J. Consumption remains fairly constant up to 
32,768 containers. 

4 Containers cost model based on energy 
consumption 

Energy costs in the composition of IaaS cloud expenses are 
undeniable. One of the main contributions of this work is the 
proposal and description of a pricing model for IaaS 
providers that considers containers’ energy consumption. 
Tenants are encouraged to optimise their applications when 
priced based on energy consumption. 

 

 

 

 



 Energy-based cost model of containers provisioning on clouds 615 

Table 2 Notation related to the container’s energy consumption in a period of time 

Notation Description 

wP  Price for watts. 

idleW  Watts consumption of idle container server. 

idleC  Energy costs to maintain active idle server. 

uT  Server’s available resources usage rate. 

cT  Server’s available resources complement rate. 

| |uCont  Tenants containers in a server. 

pG  Providers expenses to maintain available and not allocated resources. 

| |sCont  Containers per server. 

cpuP  CPU resource price. 

cpuW  CPU resources consumed in watts  by container. 

cpuC  Energy consumption related to physical CPU usage. 

( , )cpuU t c  CPU usage of a specific container c . 

memW  Watts consumed by the container memory resource. 

memC  Energy cost related to memory usage. 

( , )t c  Given instant t  of a specific container c . 

( , )memU t c  Container’s memory usage. 

fvc  Variation factor of consumption by containers allocated on the server. 

netC  Energy costs related to network. 

( , )netU t c  Network usage of a container. 

netW  Watts consumption by network container resources. 

diskC  Cost related to input and output storage operations. 

diskP  Storage price. 

diskQ  Amount of storage used. 

orcW  Watts consumed by the container orchestrator. 

orcC  Container orchestrator’s related energy cost. 

Cost  Energy cost of a container over a period of time. 

totalC  Energy cost related to the resources usage by containers of a given customer. 

 
The proposed pricing model follows the notation described in 
Table 2. Initially, wP  represents the price charged by the 

cloud provider’s electrical distribution company, which tax 
the provider by watts consumed and according to the power’s 
supplement region. idleW  describes the energy consumption in 

watts for a given server in idle status (i.e., without hosting 
containers). idleC  is the server’s minimum energy cost, or in 

other words, is given by minimal energy that the provider 
expends to keep it active and available for the execution of 
containers. Each server has a different idleC  resulted from 

hardware-specific characteristics (technologies used, power 
supplies, CPUs, GPUs, drives, storage, among others). For 
this reason, the cost of idleC  changes depending on the 

platform on which the containers run. Thus, each specific 
server has a fixed cost in idle and must distribute it through 
the proportional apportionment between clients and 
containers allocated on the server. Therefore, equation (1) 
defines the cost to keep the server active. 

=idle w idleC P W  (1) 

For the proportional share of Cidle among the hosted 
containers, the split of Widle is required. This apportionment 
consists of 5 elements: 

1) uT  denoting the computing resources (the percentage of 

the resources allocated by clients that run containers on a 
server);  



616 A.S. Moreira et al.  

2) cT , a fee for complementing the server’s computational 

resources, applied to exempt the customer from incurring 
a higher cost than effectively allocated and used. This 
rate equalises the resource allocation percentage. When a 
single client allocates a server, and the containers do not 
use the server as a whole, the consumption of idleW  

should not be considered 100%  for pricing this client. 
The provider is also responsible for the minimum 
consumption and assumes a percentage, which we call 

cT . Therefore, if the allocated tenants’ rate uT  on the 

platform is less than cT , the cost’s apportionment is 

carried out between tenants and the provider.  

3) Gp, a management cost attributed to the provider due to 
its responsibility to scale and manage the server 
computational resources, since keeping a specific 
machine available is considered a fixed cost;  

4) | |uCont  is the element that counts and assigns the 

number of the allocated containers by each client on a 
server;  

5) | |sCont  counts and identifies by unit the allocated 

containers on the server.  

In summary, for a given tenant, the fraction of watts 
consumption in idle mode  idleW  is given by equation (2). 

  100
| | if <

| |
=

| | else
| |

p u c

u u c
s

idle

p
u

s

G T T
Cont T T

Cont
W

G
Cont

Cont

   




 


  (2) 

The equation (2) verifies if the utilisation rate uT  is less than 

the complementary rate cT . So the apportionment of this cost 

occurs between: the number of containers per tenants 

 | |uCont ; the number of containers per server  | |sCont ; 

and between the cloud provider (Gp). When uT  is greater than 

cT , idleW  is apportioned only between | |uCont  and | |sCont . 

From the identification of the server’s cost in idle mode, it 
is necessary to understand the costs of each resource  
used by containers (CPU, memory, network, storage, and 
orchestration). 

The CPU price is given by the cpuP  element, representing 

the price paid to the energy distribution company for the 
server’s CPU consumption. This element consists of cpuW , 

which identifies the number of watts consumed by CPU, and 
is composed of the elements wP  and idleC , the watts price and 

the idle server’s cost, respectively, as given by equation (3). 

 =cpu cpu w idleP W P C   (3) 

Equation (3) enables the formulation of the total CPU cost 

 cpuC  at a given time interval ( 1, 2)T T . The total CPU cost  

 

is composed of the element  ,cpuU t c , which is equivalent to 

the CPU usage at a given time t  of a specific container ( c ), 
and by the allocated containers sum per server. So the total 
CPU cost is expressed in equation (4). 

 
| |2

= =11

= ,
ContT u

cpu cpu cpu
t T c

C U t c P   (4) 

Following, memW  reflects the memory consumption’s energy, 

identifying the number of watts consumed by the memory 
resource. Also,  ,memU t c  is equivalent to the memory usage 

at a given time t  of a specific container ( c ). Hence, it is 
possible to identify the energy cost of memory represented by 
the element menC , addressed in equation (5), which depicts 

the memory pricing in the container’s execution. 

  
| |2

= =11

= ( , )
ContT u

mem mem mem w idle
t T c

C U t c W P C     (5) 

In turn, the netW  accounts for the consumption in watts  

an application has when using the network resource, 
highlighting that this resource has little significant variation in 
the number of active containers on the machine, maintaining 
a variation only to the network bandwidth used. Therefore, to 
calculate the element netC  it is necessary to analyse two 

elements in addition to netW : (i) the ( , )netU t c  and (ii) netP . 

The element  ,netU t c  identifies the network usage at a 

given time t  for a specific container ( c ), given by the size of 
the bandwidth used in the container’s execution in a given 
period, through the sum of the time interval, as well as the 
same-server containers’ sum. netP  is composed of fvc , 

which refers to a price variation factor depending on the 
same-server existing containers’ consumption. Therefore, 

netP  is detailed in equation (6) while netC  is expressed by 

equation (7). 

  =net rede w iP W P C fvc    (6) 

 
| |2

= =11

= ,
ContT u

net net net
t T c

C U t c P   (7) 

The parameter fvc  represents the variation in energy 

consumption (i.e., even if not very significant, this work 
understands that it is relevant to assign it to the client), 
according to the number of containers running on the server. 
Thus, if the server has only one client running its containers, 
fvc  is 1. If there is more than one client running containers 

on the server, then the containers’ number per client is 
divided by the total number of containers allocated on the 
machine and then added 1. 

1 if | |=| |

| |
1 else

| |

u s

u

s

Cont Cont

fvc Cont

Cont


  


  (8) 



 Energy-based cost model of containers provisioning on clouds 617 

Regarding the storage resource, the experimental analyses 
(see Section 3) demonstrated that the resource is constant in 
terms of energy consumption when there is only one 
container running in the server, regardless of the size of the 
disc I/O. However, when running more than one container per 
server, the storage’s energy consumption is variable. In this 
sense, the storage cost diskC  (described in equation (9) is 

composed by diskU  (i.e., the storage’s size used, and for diskW  

representing the consumed watts by the storage resource). 

 

 

| |2

= =11

2

= 1

( , ) if | |>1

=

( ) else

ContT u

disk disk w idle s
t T c

disk T

disk disk w idle
t T

U t c W P C Cont

C

U t W P C


  



   





  (9) 

If the container number is higher than 1 , then the storage cost 
is obtained by double sums. The inner sum considers all 
containers’ storage usage requested by the customer, while 
the outer sum realises the sum of the general storage usage in 
a given interval. Otherwise, the cost is obtained only by the 
sum of the time interval accounting for the server allocated 
container’s storage usage. In addition to the energy 
consumption of computational resources in active containers, 
there is also the container management’s energy 
consumption. Container orchestrating technologies realises 
the management of these containers (i.e., Kubernetes, Swarm, 
Mesos, among others). Therefore, orchestration expenses 
must be accounted. 

The container orchestration analysis (see Section 3) 
reveals the master node is not influenced energetically by the 
number of managed containers. For this reason, it is 
necessary that the energy sharing of this management takes 
place between all the orchestrated containers. The 
orchestration’s energy pricing involves the utilisation and 
compensation fees, i.e., uT  and cT , respectively. Also, the 

orcW  represents the watts consumed by the orchestrator, 

defining the cost of container orchestration  orcC . Thus, 

orcC  is defined in equation (10). 

    

 

100

100
| | if <

| |=

.
| | else

| |

u c
orc w idle

u u c
sorq

orq w i

u
s

T T
W P C

Cont T T
ContC

W P C
Cont

Cont

   
    

  

    


 (10) 

Equation (10) determines if the utilisation fee uT  is less than 

the complement fee cT , then the apportionment of this cost 

occurs among the number of containers per tenants | |uCont  

and enter the containers number per server | |sCont . 

However, if uT  is greater than cT , the apportionment of this 

cost occurs only between | |uCont  and | |sCont . Thus, if the 

cloud provider allocates a customer into a machine with no 
other user, the customer will not pay the full price of the 
active server. Therefore, equation (11) presents the container 
cost, where totalC  is the cost of using resources per container 

for a given customer. 

=total idle cpu mem rede disk orcC C C C C C C      (11) 

The proposed cost model is simplified and stratified 
according to the elements that make up an OS virtualisation 
environment in IaaS cloud providers. Consequently, the 
calibration of the model components depends on the analysis 
of the behaviour of each resource. 

5 AWS case study 

AWS Fargate (2020) is a serverless compute service, 
allowing container execution without the need to provision 
servers from customer side. We selected this service due to its 
pricing model based on on-demand resource allocation. 
Tenants pay for the number of CPUs allocated, and the 
amount of memory, storage, and communication (data size) 
used (Vohra, 2018) over time. Tenants can adapt resource 
demands second by second. Unfortunately, in practice, 
container management optimisation is a complex task. 
Furthermore, tenants are responsible for monitoring resource 
utilisation and scheduling. 

5.1 Energy consumption with Fargate settings 

Section 3 depicts the energy consumption analysis of physical 
resources where the dedicated server has its resources 
saturated. Since AWS does not allow low-level access to 
physical resources, we built a similar platform using our Yeti 
cluster. We used Yeti to reproduce AWS Fargate’s set of 
supported configurations (https://aws.amazon.com/fargate/ 
pricing/). We used Docker as the containerisation platform 
and Kubernetes for management since Fargate also uses both 
technologies. The experimental environment consists of three 
servers. One server is reserved for the Kubernetes master 
orchestrator. The others servers run the Docker containers 
through the Kubernetes workers (see Figure 6). 

5.1.1 AWS Fargate service offers 

Table 3 presents the AWS Fargate offers analysed. We 
evaluate energy consumption for each resource at maximum 
utilisation. Our experiments consist of two benchmarks, 
StressNG and Stream, executing 21 different vCPU and 
memory consumption scenarios. 

 

 

 



618 A.S. Moreira et al.  

Figure 6 Containers management  

 

Source: Adapted from Kubernetes (2020) 

 
Table 3 AWS Fargate service offers 

ID CPU Memory values 

#1 0.25 vCPU 0.5 GB, 1 GB and 2GB 

#2 0.5 vCPU Min. 1GB and Max. 4GB, in 1 GB 
increments 

#3 1 vCPU Min. 2GB and Max. 8GB, in 1 GB 
increments 

#4 2 vCPU Min. 4GB and Max. 16GB, in 1GB 
increments 

#5 4 vCPU Min. 8GB and Max. 30GB, in 1GB 
increments 

Source: Adapted from Amazon Web Services (AWS) 
(2020a). 

VCPU energy consumption is obtained for each ID by 
keeping memory utilisation at idle while stressing CPU. 
Memory energy consumption is obtained with maximum 
CPU and memory utilisation. 

Figure 7(a) depicts energy impact from resources  
(CPU and memory) based on Fargate service offers. X-axis 
represents each scenario evaluated. Y-axis represents energy 
consumption in joules. The dashed green line represents the 
minimum energy consumption of the server with no 
workload; i.e., when there is a resource allocation but its 
applications do not require resources. All scenarios show a 
gap between the idle line and their energy consumption 
values. This gap reaches up to 300 joules. However, Fargate 
does not take this into account when charging customers. 

5.1.2 Additional AWS Fargate services 

AWS considers storage and data transfers as additional 
services. For the storage service (Amazon EBS Volumes), 
tenants have five types of volumes and pay per GB-month of 
provisioned storage, as described in Table 4. We selected the 
cold HDD (sc1) volume because it is similar to Yeti’s 
hardware. 

Figure 7  Experiment results (a) CPU and memory mixed energy consumption (b) storage energy consumption 

 

(a) (b) 



 Energy-based cost model of containers provisioning on clouds 619 
 

Table 4 Additional AWS offers 

Storage services Data transfers OUT 

General Purpose SSD (gp2) Volumes Up to 1 GB / Month 

Provisioned IOPS SSD (io2) Volumes Next 9.999 TB / Month 

Provisioned IOPS SSD (io1) Volumes Next 40 TB / Month 

Throughput Optimised HDD (st1) 
Volumes 

Next 100 TB / Month 

Cold HDD (sc1) Volumes Greater than 150 TB / 
Month 

Source: Adapted from Amazon Web Services (AWS) 
(2020c, 2020b) 

Storage devices consume energy to remain in service, 
regardless of I/O activity. Storage transactions (writes and 
reads, HDD on our experimets) demand additional energy. 
Amazon EBS volume service disregards storage transactions 
and, consequently, the energy consumption variation.  
Figure 7(b) depicts storage energy consumption considering 
disk transaction activities. The X-axis represents the amount 
of available HDD space to perform HDD-intensive 
transactions. The Y-axis represents the energy consumed in 
joules. We used the flexible I/O benchmark (Axboe, 2017) to 
generate HDD-intensive transactions. We varied the number 
of containers (from one to eight) and HDD space size (60 GB 
and 80 GB). The results show that the energy consumption 
behaviour is similar for both space sizes. However, the 
number of containers has a clear energy impact. For instance, 
eight containers consume about 70 J more than only one 
container. Compared to idle (dashed green line, without disk-
intensive transactions), the gap reaches 260 J. 

Regarding data transfers, Amazon EC2 offers free data 
transfers into Amazon (inbound). Outbound data transfers are 
charged according to Table 4. Amazon’s data transfer service 
considers the energy consumption of network equipment to 
be fixed. However, network consumption may be high in one 
month and demand no resources in the next month. 

We used iperf3 (Mortimer, 2018) to generate network 
load. Figure 8 presents client and server network flow 
behaviour. The X-axis represents the number of containers 
and bandwidth. The Y-axis represents the energy 
consumption in joules. We gradually increase network load 
from 1 MB up to server saturation at 10 GB. Then we 
oversaturate the server network using loads of 25 GB, 50 GB 
and 100 GB to verify its behaviour under high traffic. The 
results show a gradual increase in energy consumption up to 
500 MB, with a maximum difference of 50 J when compared 
to idle server – an increase of 42% . Values higher than 1GB 
behaved differently, showing non-linear growth in energy 
consumption and leading the energy consumption gap to a 
maximum of 270 J compared to the idle – an increase of 
157% . If the application aims to reduce energy consumption, 
it is important to reduce communication between containers. 
It is possible to characterise the energy impact of the relevant 
storage resource by varying the number of containers that use 
storage. For the network resource, the energy impact is 
evident when the resource is saturated. 

5.2 nome vs. AWS Fargate 

This section compares nome to AWS Fargate model. The first 
scenario comprises two configurations with two and four 
CPUs. 

Table 5 reveals that Fargate only considers the amount of 
CPU and memory provisioned, not their actual usage 
(percentages). The prices, therefore, are the same for 50%  
and 100%  CPU resource utilisation. Nevertheless, one CPU 
(corresponding 50%  of CPU provisioned demand) represents 
5.57%  less energy consumption than the 100%  considered 
by AWS Fargate. The customer’s bill must consider this 
difference. Since containers leverage a flexible platform, the 
cost model should also be flexible. A flexible cost model 
motivates customers to make their applications more 
efficient, encouraging energy savings and green IT practices. 

Figure 8 Network energy consumption 

 

  



620 A.S. Moreira et al.  

Table 5 AWS Fargate price 

CPUs Usage (%) Price (US$/hour) 

2 50% 0.08 

100% 0.08 

4 50% 0.16 

100% 0.16 

5.2.1 Estimated price of individual cost components 

EPCC considers five components’ energy consumption to 
calculate the cost: CPU, memory, storage, network, and 
container orchestration. In contrast, since AWS has a private 
cost model, the proportion of the energy cost in the final 
customer’s billing is unknown to us, and we cannot identify 
these publicly available data. The literature suggests that 
energy costs reach up 50%  of total DC costs (Comerford, 
2015). Operating costs include air conditioning and other 
energy-intensive equipment. In PSVE (Hinz et al., 2018), the  

authors estimate that energy consumption can be between 5  
and 15%  of IaaS instance price. Our work follows this 
estimate. Also, we adopt the energy price of US$ 0.0773 per 
kWh (This is the value from the electrical distributor in the 
northern Virginia region in the United States, where the AWS 
DC is located). 

Figure 9 presents estimated prices. As nome considers 
components’ usage, the results show the estimated price for 
four different scenarios ( 25% , 50% , 75%  and 100% ). 
Each radio graph has a proportional axis, in which the 
maximum value is 100%, and the minimum is 0%. Therefore, 
the highest prices are on edge and the lowest one in the 
centre. Each axis represents the estimated price, with energy 
cost to 5%, 10%, 15% and nome, for each cost model 
component (CPU, memory, network, storage, and 
orchestrator). We represented the scenarios using different 
colours using solid lines linked by dashes, forming a 
polygonal surface. The analysis of combined components is 
realised by calculating the polygon’s surface area. The 
smaller the surface area, the lower the price. 

Figure 9 EPCC vs. AWS Fargate: estimated price of individual cost components according to usage (a) Components use by 25%  
(b) Components use by 50% (c) Components use by 75% and (b) Components use by 100% 

 

(a) (b) 

 

(c) (d) 

 

 
 
 



 Energy-based cost model of containers provisioning on clouds 621 
 

In all scenarios (Figure 9(a) to 9(d)), the AWS 15%  estimate 
(dark green) is the worst case, as expected, concerning price 
(highest). Although AWS 10%  (light green) is better than 
nome when CPU and storage usages are 75%  and 100% , 
the surface area of nome remains smaller than the AWS 10%  
estimate’ surface area. Finally, comparing the AWS 5%  
(orange estimate) and nome, nome has at least three of five 
dots in the centre (the best result), but it has an estimate price 
higher than AWS 5%  on two scenarios ( 75%  and 100% ). 
As expected, nome is best when component use is low. More 
importantly, the AWS pricing model cannot reflect lower 
utilisation of energy, which corroborates to our main point the 
importance of aggregating financial benefit to engender 
energy savings. 

The total price considers energy cost to keep an active 
idle server in addition to the individual component prices. 
Figure 10 shows a radio graph including five different 
scenarios based on components usage; e.g., 0%  shows idle 
server and for 100%  all components are saturated. For all 
scenarios, nome leads to total prices lower than AWS 15%  
and 10% . The AWS 5%  estimated has the lowest value for 
the total price, except when the server is idle. Finally, the 
price estimates from nome adapt to energy consumption 
according to components usage. Thus, the tenants are 
encouraged to improve energy consumption, optimise 
resource utilisation and apply green IT concepts. 

Figure 10 Total container energy price – totalC  

 

6 Considerations and future works 

Energy is one of the main components of data centres’ total 
cost and physical infrastructure in cloud computing. Since the 
emergence of cloud computing, cost models have evolved 
while service offers expanded. Among other characteristics, 
resource optimisation is one of the key characteristics of the  
 

cloud service model. Cloud tenants are aware of where 
resources are allocated because it directly impacts their bills. 
However, energy still is missing in this equation, especially 
since its impact is not perceived by tenants who are not 
encouraged to optimise its utilisation. 

This work proposed nome, a cost model that rewards 
energy awareness by accounting for the usage of allocated 
resources. nome combines the energy component with the 
allocation component to determine where and how to contract 
services and use resources. Our analysis of individual 
resources and their energy consumption reveals that an 
application with resource-intensive demands can consume 3-
4x more energy. Finally, a resource-intensive application can 
count up to US$ 0.049 /hour more than an idle one. 

Considering the limitations identified during the 
realisation of this research, it was observed the possibility of 
considering in a future work a detailed analysis of the 
Kubernetes energy consumption. Since in the nome proposal, 
the Kubernetes master was deployed in an isolated structure 
(i.e., the only service running on the VM). Thus, this specific 
energy consumption of each computational resource (i.e., 
network, memory, storage and CPU) was not measured. 

Another point to be measured in future work is the 
apportionment of the energy consumption of different 
virtualisation services hosted on the same host node. For 
example, when running a VM and a container in parallel on 
the same host node, then how should the energy cost of 
computational resources be attributed to the different 
environments? 

Future work will also comprise expanding the research  
to evaluate the impact of resource utilisation on energy 
consumption using other cloud providers and services, such 
as OpenStack and its services: Nova, Magnum and Ironic. 

Acknowledgements 

This study was supported by CAPES, FAPESC, UDESC and 
LabP2D. Experiments presented in this paper were carried 
out using the Grid’5000 testbed, supported by a scientific 
interest group hosted by Inria and including CNRS, 
RENATER and several Universities as well as other 
organisations. 

References 

Amazon Web Services (AWS) (2020a) AWS Fargate Pricing. 
Available online at: https://aws.amazon.com/fargate/pricing/ 

Amazon Web Services (AWS) (2020b) Data Transfer. Available 
online at: https://aws.amazon.com/ec2/pricing/on-
demand/#Data_Transfer 

Amazon Web Services (AWS) (2020c) Amazon EBS volumes. 
Available online at: https://aws.amazon.com/fargate/pricing/ 

Axboe, J. (2017) 1. fio - flexible i/o tester rev. 3.23â. 

Bawden, T. (2016) ‘Global warming: data centres to consume three 
times as much energy in next decade, experts warn’, The 
Independent, Vol. 23. 



622 A.S. Moreira et al.  

Begum, S. and Khan, M.K. (2011) ‘Potential of cloud computing 
architecture’, Proceedings of the IEEE International 
Conference on Information and Communication Technologies 
(ICICT), IEEE, pp.1–5. 

Bhattacharya, A.A., Culler, D., Kansal, A., Govindan, S. and Sankar, 
S. (2013) ‘The need for speed and stability in data center power 
capping’, Sustainable Computing: Informatics and Systems, 
Vol. 3, No. 3, pp.183–193. 

Bindu, G.B.H., Ramani, K. and Bindu, C.S. (2018) ‘Energy aware 
multi objective genetic algorithm for task scheduling in cloud 
computing’, International Journal of Internet Protocol 
Technology, Vol. 11, No. 4, pp.242–249. 

Bittencourt, L.F., Goldman, A., Madeira, E.R.M., Da Fonseca, 
N.L.S. and Sakellariou, R. (2018) ‘Scheduling in distributed 
systems: a cloud computing perspective’, Computer Science 
Review, Vol. 30, pp.31–54. 

Brondolin, R., Sardelli, T. and Santambrogio, M.D. (2018)  
‘Deep-mon: dynamic and energy efficient power monitoring 
for container-based infrastructures’, Proceedings of  
the IEEE International Parallel and Distributed  
Processing Symposium Workshops (IPDPSW), IEEE,  
pp.676–684. 

Columbus, L. (2017) ‘State of cloud adoption and security’, Forbes. 

Comerford, T. (2015) ‘How data center operators can avoid energy 
price hikes this winter’, Data Center Knowledge. 

Da Silva, V.G., Kirikova, M. and Alksnis, G. (2018) ‘Containers for 
virtualization: an overview’, Applied Computer Systems,  
Vol. 23, No. 1, pp.21–27. 

Danilak, R. (2017) Why energy is a Big and Rapidly Growing 
Problem for Data Centers, Frobes Technology Council. 

DIAMANTI (2019) Container Adoption Benchmark Survey, 
Technical Report. 

Estrada, Z.J., Stephens, Z., Pham, Kalbarczyk, Z. and Iyer, R.K. 
(2014) ‘A performance evaluation of sequence alignment 
software in virtualized environments’, Proceedings of the 14th 
IEEE/ACM International Symposium on Cluster, Cloud and 
Grid Computing (CCGrid), IEEE, pp.730–737. 

Fargate AWS (2020) AWS Fargate serverless compute for 
containers. Available online at: https://aws.amazon.com/ 
en/fargate/ 

Garg, S.K. and Buyya, R. (2012) ‘Green cloud computing and 
environmental sustainability’, Cloud computing and Distributed 
Systems, pp.315–340. 

GRID5000 (2020) GRID5000 large-scale and flexible testbed for 
experiment-driven research. Available online at: 
https://www.grid5000.fr/ 

Guitart, J. (2017) ‘Toward sustainable data centers: a comprehensive 
energy management strategy’, Computing, Vol. 99, No. 6, 
pp.597–615. 

Hammadi, A. and Mhamdi, L. (2014) ‘A survey on architectures and 
energy efficiency in data center networks’, Computer 
Communications, Vol. 40, pp.1–21. 

Hinz, M., Koslovski, G.P., Miers, C.C., Pilla, L.L. and Pillon, M.A. 
(2018) ‘A cost model for IAAS clouds based on virtual 
machine energy consumption’, Journal of Grid Computing, 
Vol. 16, No. 3, pp.493–512. 

Hu, J., Deng, J. and Wu, J. (2013) ‘A green private cloud 
architecture with global collaboration’, Telecommunication 
Systems, Vol. 52, No. 2, pp.1269–1279. 

 

 

 

Jain, A., Mishra, M., Peddoju, S.K. and Jain, N. (2013) ‘Energy 
efficient computing- green cloud computing’, Proceedings of 
the International Conference on Energy Efficient Technologies 
for Sustainability, pp.978–982. 

Kim, N.Y., Ryu, J.H., Kwon, B.W., Pan, Y. and Park, J.H. (2018) 
‘Cf-cloudorch: container fog node-based cloud orchestration for 
IoT networks’, The Journal of Supercomputing, Vol. 74,  
No. 12, pp.7024–7045. 

King, C.I. (2019) Stress-ng: A Stress-Testing Swiss Army Knife, 
CANONICAL. 

Kominos, C.G., Seyvet, N. and Vandikas, K. (2017) ‘Bare-metal, 
virtual machines and containers in openstack’, Proceedings of 
the 20th Conference on Innovations in Clouds, Internet and 
Networks (ICIN), pp.36–43. 

Kubernetes (2020) Kubernetes components. Available online at: 
https://kubernetes.io/docs/concepts/overview/components/ 

Kurpicz, M., Orgerie, A-C., Sobe, A. and Felber, P. (2018) ‘Energy-
proportional profiling and accounting in heterogeneous 
virtualized environments’, Sustainable Computing: Informatics 
and Systems, Vol. 18, pp.175–185. 

Leitner, P., Cito, J. and Stöckli, E. (2016) ‘Modelling and managing 
deployment costs of microservice-based cloud applications’, 
Proceedings of the 9th International Conference on Utility and 
Cloud Computing, ACM, pp.165–174. 

Li, Z., Tesfatsion, S., Bastani, S., Ali-Eldin, A., Elmroth, E., Kihl, 
M. and Ranjan, R. (2017) ‘A survey on modeling energy 
consumption of cloud applications: deconstruction, state of the 
art, and trade-off debates’, IEEE Transactions on Sustainable 
Computing, Vol. 2, No. 3, pp.255–274. 

McCalpin, J.D. et al. (1995) ‘Memory bandwidth and machine 
balance in current high performance computers’, IEEE 
Computer Society Technical Committee on Computer 
Architecture (TCCA) ‘Newsletter, Vol. 2, pp.19–25. 

Mell, P. and Grance, T. et al. (2011) The NIST Definition of Cloud 
Computing, NIST Special Publication. 

Mentz, L.L., Loch, W. and Koslovski, G. (2020) ‘Comparative 
experimental analysis of docker container networking drivers’, 
Proceedings of the 9th IEEE International Conference on 
Cloud Networking (IEEE CloudNet’20), IEEE, USA. 

  Moore, S. (2020) Gartner Forecasts Strong Revenue Growth for 
Global Container Management Software and Services  
through 2024, Sydney, Australia. Available online at: 
https://www.gartner.com/en/newsroom/press-releases/2020-06-
25-gartner-forecasts-strong-revenue-growth-for-global-co 

Morabito, R. (2015) ‘Power consumption of virtualization 
technologies: an empirical investigation’, IEEE/ACM 8th 
International Conference on Utility and Cloud Computing 
(UCC), IEEE, pp.522–527. 

Mortimer, M. (2018) iperf3 Documentation Release 0.1.10. 

Pandikumar, S., Kabilan, S.P. and Amalraj, L. (2012) ‘Article: green 
it: a study and analysis of environmental impact of social 
networks and search engines’, International Journal of Computer 
Applications, Vol. 60, No. 6. Doi: 10.5120/9695-4135. 

Sharma, P., Chaufournier, L., Shenoy, P. and Tay, Y.C. (2016) 
‘Containers and virtual machines at scale: a comparative study’, 
Proceedings of the 17th International Middleware Conference, 
ACM, pp.1–13. 

Sharma, P., Pegus II, P., Irwin, D., Shenoy, P., Goodhue, J. and 
Culbert, J. (2017) ‘Design and operational analysis of a green 
data center’, IEEE Internet Computing, pp.1–1. 

 

 



 Energy-based cost model of containers provisioning on clouds 623 

Souppaya, M., Morello, J. and Scarfone, K. (2017) Application 
Container Security Guide, NIST Special Publication. 

Vohra, D. (2018) Amazon Fargate Quick Start Guide: Learn how to 
use AWS Fargate to Run Containers with Ease, Packt 
Publishing Ltd. 

Wu, C., Buyya, R. and Ramamohanarao, K. (2019) ‘Cloud  
pricing models: taxonomy, survey, and interdisciplinary 
challenges’, ACM Computing Surveys (CSUR), Vol. 52, No. 6, 
pp.1–36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zakarya, M. and Gillam, L. (2018) ‘Managing energy, performance 
and cost in large scale heterogeneous datacenters using 
migrations’, Future Generation Computer Systems, Vol. 93, 
pp.529–547. 

Zhang, J., Li, K., Guo, D., Qi, H., Yu, H., Jin, Y. and Sangaiah, A.K. 
(2018) ‘Sustainable green data center: guaranteeing flow 
deadlines in chains of virtual network functions with mrouting’, 
Sustainable Computing: Informatics and Systems, Vol. 19, 
pp.223–232. 


