
INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS, 2018
https://doi.org/10.1080/17445760.2017.1422500

An architecture for synchronising cloud file storage and
organisation repositories

Gil Andriani, Eduardo Godoy, Guilherme Koslovski , Rafael Obelheiro and
Mauricio Pillon

Graduate Program in Applied Computing, Department of Computer Science, Santa Catarina State University,
Joinville, Brazil

ABSTRACT
Cloud computing providers have disseminated dynamic storage
provisioning delivered to end users as on-demand services. Although cloud
file storage and sharing has become popular among home users, the access
requirements, performance expectations and usage characteristics are
different for organisations, and were not originally considered by popular
applications and tools for synchronising files between cloud providers
and local repositories. Moreover, multisite organisations traditionally
have legacy file storage and wide-area networking solutions to support
their business systems. Typically, the file repositories are replicated
between sites using private communication links. The combination of
legacy storage solutions interconnected through private links with cloud-
based file storage is a challenging task. In this context, this paper
introduces Cloud4NetOrg, a client architecture for cloud file storage and
multisite repository synchronisation. We implemented prototypes of this
architecture that interact with two popular cloud file services (DropBox and
OneDrive), and the experimental results indicate a promising application
in collaborative environments with several LANs. Indeed, Cloud4NetOrg
decreases the synchronisation time and the total data transferred from/to
cloud repositories by using the organisation repositories as a hierarchical
cache system.

Cloud4NetOrg is proposed for geographically distributed organisations
composed of dynamic and temporary collaborative groups. The interaction
between employees is based on file sharing. Commonly, sites are
interconnected by a private network and have an internal data storage
repository. A single site can have multiple subnetworks to interconnect the
collaborative groups. In addition, home-office users collaborate through
the Internet, usually using size-limited storage devices.

ARTICLE HISTORY
Received 11 April 2017
Accepted 27 December 2017

KEYWORDS
Cloud storage; file
synchronisation; legacy
storage devices;
synchronisation client;
Cloud4NetOrg

CONTACT Mauricio Pillon mauricio.pillon@udesc.br
© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2017.1422500&domain=pdf
http://orcid.org/0000-0003-4936-1619
http://orcid.org/0000-0001-7634-6823


2 G. ANDRIANI ET AL.

1. Introduction

Cloud computing revolutionised the use of processing, communication and storage resources, deliv-
ering such functionalities to users as on-demand services [1]. The adoption of cloud storage is a reality
for home users: storage, editing, and file sharing were popularised by disseminating clients for file
synchronisation (e.g. DropBox [2], Google Drive [3] and OneDrive [4]) across local devices and hosted
cloud repositories. However, these synchronisation tools are designed with a focus on home users
with simple access and sharing requirements.

For instance, users on academic campuses have repositories with an average size of 4.23 GB, and
most users tend to store many files (over 1000), including users with over 20,000 stored files [5].
Concerning dynamic updates, it was observed that about 82% of update operations carry up to
1 MB, featuring a concentration of use on small files. Still, most of the connection sessions between
clients and providers (85% of the sessions) have no significant file transfers, while file sharing between
groups with large numbers of users is not a reality for academic settings [5–7]. Although popular, the
file synchronisation tools developed for home users do not fully meet the specific requirements of
a major part of the enterprise spectrum. With regarding the file accessing, usually in organisations
are built dynamic and temporary groups composed of collaborative users spontaneously formed
according to professional interests and needs. The collaborative users tend to be concentrated in
private networks accessing legacy storage systems. Eventually, the local repositories are synchronised
atop private networks. Moreover, collaborative users havemore simultaneously shared files compared
to home users. Consequently, synchronisation generates higher network traffic on each client, and
latency becomes a critical factor. Even though these users are mostly in private networks, existing
cloud synchronisation clients ignore the interaction with local repositories. Recently, synchronisation
tools and services focusing on enterprises were launched [8,9] partially addressing the enterprise
challenges. However, the full integration of cloud-based file storage with multisite organisations is an
open research field [10,11].

Cloud synchronisation tools keep files synchronised with the cloud storage service by periodically
copying all changed remote data to user’s devices and vice-versa. This is not a limiting factor for home
users as usually the capacity of virtual space (the cloud space quota) is similar or higher than the
storage space on their personal devices. In other words, the data volume is not a critical factor. In short,
the cloud synchronisation tools are upper-bounded by the local storage capacity as cloud providers
deliver the illusion of infinite remote storage space.

Organisation’s devices have limited repository space, and consequently the volume of data stored
on the cloud exceeds the storage capacity of local workstations [12]. In this sense, a recent proposal
introduced the selective file synchronisation given to users the freedom for selecting which files must
be periodically synchronised [8]. Unselected files are still indexed and on-demand available.

The upfront investment for acquiring data storage equipment declined in recent years motivating
the implementation of local solutions at different scales of capacity. Indeed, the private data reposi-
tories available in organisations have higher storage capacity compared to the local disk capacity of
workstations. Instead of replacing the consolidated storage mechanisms by cloud storage, we claim
that such local storage solutions can be used for composing a caching layer between cloud storage services
and synchronisation tools. Moreover, collaborative users can select only files they need, when they
need them, for being automatically synchronised. Although simple, the cache architecture can soften
the access latency for recurrence used files.

The ubiquitous access to files over the Internet and the concentration of professionals in one
place are conflicting factors. On the one hand, the possibility of accessing data from anywhere
allows greater interaction and collaboration between teams; on the other hand, the concentration
of professionals in one place accessing the same volume of data in the cloud can overload the Internet
link, consequently increasing latency and networking costs [13]. In this sense, a second characteristic
of multisite organisations that can be explored for optimization is the existence of private network
links between sites. This solution offers features such as high availability and symmetric download



INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 3

and upload speed. Consequently, the dedicated interconnection can attenuate the performance
variability observed in the traditional Internet, and the resulting networking stability is beneficial
for TCP connections supporting the synchronisation tools. Our second claim is that the existing private
network links can be used for synchronising files, thereby reducing Internet link usage.

In short, we believe that consolidated network and storage services and tools should work in
parallel with cloud storage. In this context, the main contribution of this paper is the definition of a
client architecture for synchronising legacy repositories of geographically-distributed organisations
and cloud file storage services, termed Cloud Storage for Network-based Organisation File System
(Cloud4NetOrg). This architecture1 has been validated through the implementation and experimental
evaluation of two prototypes that interact with well-known cloud storage services (DropBox and
OneDrive). The results highlight that an organisation can reap significant benefits from using existing
local storage repositories to intermediate access to remote cloud storage.Moreover, the cloudprovider
also enjoys reduced network and server load when files are directly retrieved from local caches.

The remainder of this paper is organised as follows: Section 2 reviews the concepts and issues that
motivate our research, while Section 3 discusses related work. The proposed architecture is presented
in Section 4. Experimental analysis is discussed in Section 5 while conclusion and perspectives are
presented in Section 6.

2. Concepts, issues andmotivations

Cloud-based file storage comprises two main actors: data storage repositories and synchronisation
clients. The internal architecture of repositories is usually composed of modules for monitoring
and indexing data, implemented as a distributed file system, focusing on delivering availability,
authenticity, and confidentiality to users. Complementarily, cloud providers offer services to control
versioning, quota sharing and collaborative editing. For their part, file synchronisation clients are
responsible for maintaining a directory structure and files synchronised with the cloud repository. File
transfer events are realised by synchronisers and observers, that act on the metadata associated with
the files. There are two observers, locally- and remotely-placed, responsible for identifying changes in
files generated by sharing users. When needed, a synchronising module performs the transfer of files
(partial or total) between local and remote repositories. Some common features are found in popular
clients such as incremental synchronisation, encryption and data compression.

Cloud-based file synchronisation clients are widespread among home users, satisfactorily serving
their needs related to easy andon-demandaccess. The content stored in the cloud is synchronisedwith
local devices bounded by the minimum storage space between source and destination directories.
Usually, this limitation is perceived at user’s work devices (e.g. workstation, smartphones, laptops).
Local storage devices can have available capacity close to hundred gigabytes while cloud storage
can offer terabytes of storage capacity [15]. Although, conceptually speaking, a selective and partial
repository synchronisation [8] is not in accordance with cloud principles [16] (some applications
allows the selection of which files and directories must be synchronised with user’s devices). However,
configuring and managing a hierarchy of synchronised directories is a tricky task, which places the
burden of complexity on the user.

Recently, cloud storage providers have started offering specific services to organisations, increasing
storage capacity and service availability [8,17]. However, such services fall short of meeting the
expectations of enterprise environments. Usually, such organisations are composed of multiple users
collaborating on common projects, often placed in geographically-distributed environments inter-
connected by private networks. Figure 1 depicts a scenario where an organisation is composed of
two groups, identified by green and red, distributed across New York, Paris, Joinville, and Prague. This
organisation has two physical offices at New York and Paris which concentrate the largest number
of employees. Both sites are interconnected by a private network and have an internal data storage
repository. Complementary, two users are remotely collaborating through the Internet, placed at
Joinville and Prague.



4 G. ANDRIANI ET AL.

Figure 1. A common scenario of collaborative users from a multisite organisation. Home-office users (Joinville and Prague) interact
with users concentrated at Paris and New York. A private network is available for interconnecting data repositories.

Storage systems based on the Network File System (NFS) protocol [18], Common Internet File
System (CIFS) standard effort [19] and Server Message Block (SMB) protocol [20] are largely used
by enterprise environments. Such solutions are useful for servers replicated through virtual private
networks. While the storage systems can be deployed in Paris and New York, however, collaborators
in Joinville and Prague must use a different approach for sharing files, even if a virtual private network
(VPN) over the Internet is available. Although a VPN can offer a private communication channel, the
traffic is routed atop the Internet and quality-of-service guarantees are not provided (differently from
a private network between Paris and New York). Summing up, the packet losses currently observed on
Internet affect the performance of TCP-congestion control algorithm [21] propagating a performance
degradation to final applications. Consequently, the synchronisation time is increased, mainly for
small files. Moreover, for collaborators within a single site (for instance, users at the Paris and New York
facilities in Figure 1), the Internet access link can become a bottleneck that degrades the perceived
quality-of-experience of file synchronisation with the cloud.

Aworkaround for the users in Joinville and Prague is to retrieve files directly from cloud repositories.
Even communicating over the Internet, commercial cloud-based mechanisms use content-delivery
networks to approximate services and users, alleviating the quality-of-service obstacles [22,23]. In
short, with cloud-based approaches, the networking bottleneck (latency and/or bandwidth) is ob-
served on the users access-points, while with VPN it is present at both connection end-points
(enterprise VPN server and collaborators). Thus, remotely-located users must use cloud storage
services.

Regarding the race conditions when multiple users are concurrently accessing the same files,
the popular synchronisation tools follow a well-known design principle, called the end-to-end argu-
ment [24], which claims that only the data consuming actor (in this case, the user) can decide which
file version is the correct one. Thus, when the same file is written simultaneously by several users,
synchronisation systems just create multiple versions of the file, and later a user can decide which one
should prevail.

To summarise, the current architectureof synchronisation tools, alliedwithgeographically clustered
collaborators, imposes a barrier on cloud storage adoption by enterprises [25]. The use of synchronisa-
tion applications developed for home and small-scale scenarios is not in accordancewith business and
organisational requirements [8]. In short, two main architectural barriers are identified on available
popular solutions: (i) lack of integration with private and legacy storage systems; (ii) synchronisation
latency in interactions with cloud servers.



INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 5

3. Related work

Data and file synchronisation between local and remote repositories have received attention from
academic and industrial communities. Specifically considering the interaction with cloud repositories,
BlueSky [10] and SCFS [11] share similar objectives with Cloud4NetOrg. The former provides a net-
worked file system based on cloud storage (natively integrated with Amazon S3 and Windows Azure)
which supports multiple protocols such as NFS and CIFS. The latter provides access to cloud storage
services through a near-POSIX interface with internal design based on FUSE-J [26].

Regarding commercial tools for synchronising cloud and local repositories, Nasuni [27], Twin-
Strata [28], Panzura [29], and StorSimple [30] are highlighted. Nasuni and Panzura offer virtual network-
attached storage (NAS) appliance services and CIFS/NFS gateways, respectively. BlueSky, Nasuni
and Panzura fulfill the requirements of geographically concentrated organisations, but ignore the
existence of home-office collaborators, an expanding practice today, as well asmultisite organisations.
The internal design of neither mechanism is disclosed, and consequently a detailed comparison is
unfeasible.

Cloud storage providers deliver high availability and scalable on-demand file-systems services, such
as GFS [31], S3FS [32], CSTORE [33], and Hadoop [34]. However, the application programming interface
(API) calls and implementation do not adhere to POSIX standards, making it hard to integrate them
with the legacy storage systems available on organisations. Indeed, administrators have to choose
between maintaining legacy solutions or increasing the functionality that comes with file systems
linked to cloud computing.

The popular applications for file synchronisation across cloud storage and local devices spread the
use of cloud computing in the non-technical community. DropBox, OneDrive and Google Drive apps
keep local files synchronised with cloud storage requiringminimum administrative overhead. In short,
these clients perform a local copy of all shared files. This approach is convenient for home users usually
connected through a non-bottleneck Internet access point. For these users, the storage capacity
restriction is placed on cloud side (the available remote capacity, for instance). Dropbox Smart Sync
innovates by splitting metadata from data synchronisation [8]. With a Smart Sync-aware client, all files
information and team folders summaries are displayed (the metadata) even when files are not locally-
available. In short, the key goal of Smart Sync is to save local-storage space. However, the user is in
charge of selecting which files must be synchronised (a default setting can be configured for new files
and folders). Cloud4NetOrg shares the same view regarding the parameterized synchronisation and
innovates by using consolidated storage systems as local caches. Moreover, local caches are promising
approach for collaborative teams with different Internet access, as discussed in Section 4.

Cache techniques are commonly applied in distributed systems to speed up data access. For
instance, the Coda file system [35] supports disconnected operations and relies on a callback cache
consistency protocol, keeping only the latest version of the file and propagating the modifications
in parallel. In this sense, Cloud4NetOrg supports disconnected read and write operations. In case
of conflict, Coda invalidates the caches, while Cloud4NetOrg, like other cloud-based storage tools,
maintains all versions of the given file.

Considering cloud-based storage, some mechanisms use different levels of cache techniques [10,
11,36]. For instance, BlueSky [10] implements a single level of cache using the write-back coherence
approach, while SCFS [11] has two levels of cache, the first on disk (hundreds of GB) and the second
onmemory (hundreds of MB). The least recently used (LRU) algorithm is applied for data replacement.

Coral [36] introduces a new data layout and cache management scheme for cloud-based storage.
The experimental analysis showed promising results when compared to BlueSky (lower access time
and cost per GB of storage). However, Coral is mostly concerned with data blocks instead of files,
which precludes its integration with legacy file repositories. Cloud4NetOrg implements a configurable
two-level cache based on a networked file system, as presented in the next section.



6 G. ANDRIANI ET AL.

Figure 2. Cloud4NetOrg architecture.

Some synchronisation clients can simultaneously use multiple providers [37–39], implementing
additional service support, fragmentation to multiple repositories and decentralised index. However,
synchronisation with local repositories (caches) and collaborative team work are ignored.

Recent studies on data traffic characterization contemplating home [5,7,40,41] and academic
users [7] indicate that the traffic for file synchronisation reached 1/3 of the traffic for on-demand video
streaming in the scenarios analysed. These works characterise the traffic profile by measuring data
volume, average file size, and synchronisation activities (management traffic). Moreover, they offer a
perspective on home-placed cloud users which guides the present proposal. However, no attention
was directed to multi-homed organisations with collaborative users. In these environments, flexibility
and heterogeneity are essential characteristics for a file storage system [18–20,42], while scalability,
high availability and security are desirable properties [42]. The present proposal, Cloud4NetOrg, meets
the essential characteristics, and also helps with scalability and high availability by combining three
key aspects: local disk storage, network-based storage systems, and cloud storage, as discussed in
Section 4.

With regarding to synchronisation performance, Wang et al. [43] and Li et al. [44] propose tech-
niques to decrease the total traffic across the Internet, sync time, and overuse (when data traffic is
greater than the amount of real data). Furthermore, optimization strategies were applied to decrease
the volumeof data traffic between cloud storage repositories and synchronisation clients. DropBox de-
serves a special discussion on this point: the client implements direct synchronisation between users
placed on a single broadcast domain by using the LanSync protocol [45]. For instance, sync clients
can detect that a set of users are located on the same local area network (LAN) and apply techniques
to enable local synchronisation, avoiding traffic from/to cloud servers. However, such approaches are
only applicable on a single broadcast domain. In short, two sharing users placed on the same office
but on different domains (i.e. a routed datagram network) will synchronise their files through cloud
services. Cloud4NetOrg innovates by allowing synchronisation between clients that are concentrated
on private networks, whether on the same broadcast domain or not.

4. Cloud4NetOrg architecture

Popular clients for synchronising files between local devices and cloud storage, such as DropBox
and OneDrive, have a set of common modules (storage, transport, observer, and metadata repos-
itory) in their architectures [46,47]. The Cloud Storage for Network-based Organisation File System
(Cloud4NetOrg) architecture, depicted in Figure 2, leverages this modular architecture, and provides
extra functionality for catering to multisite collaborators.

A key component of the architecture is a two-level cache strategy that speeds up access to
frequently used files. The first-level cache is local to each client, while the second-level cache uses
the organisation repositories, minimising the use of the Internet link and consequently decreasing
the access latency. Cloud4NetOrg is transparent to applications and software developers since the



INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 7

Figure 3. Detailed view of the Cloud4NetOrg storage module.

standard operating system interface is still used for accessing files. With regard to directory hierarchy,
Cloud4NetOrg mounts the remote repositories as traditionally performed for any network file storage
system. All modules are independent of cloud providers. In fact, just the transporte module interacts
with cloud application programming interfaces (APIs). The modules and data flow are individually
discussed in the following sections.

4.1. Storagemodule

TheCloud4NetOrg storagemodule is responsible formanaging thefile systemaswell as for performing
input and output operations. The module combines virtual file system (VFS) with FUSE [48] to
create a custom file system in user space with minimum intervention of kernel calls. In short, the
Cloud4NetOrg storage module consists of: (i) a local cache space; (ii) an access library which provides
functions to retrieve, read, write and remove files; and (iii) a file system, which exports to the operating
system a structure of directories and files. The export operation is analogous to the directory structure
control performed by traditional sync clients from the perspective of functionality and compatibility
with running applications.

The local cache is populated on demand. The Cloud4NetOrg architecture provides the user with
access to the entire set of files linked to their account on the cloud provider. As soon as a read or write
operation is triggered, if the file involved is not in the local cache or is outdated, it is transferred from
external storage to the local cache. The content replacement algorithm applied to the local cache is
LRU (the least recently used files are discarded).

Figure 3 details the Cloud4NetOrg internal data flow for performing a read request submitted by
an application. At the bottom, the VFS, FUSE, and traditional storage kernel modules receive calls from
applications. For exemplifying the data flow in Figure 3, an application starts a read request by calling
the C library (glibc). Through this library, the request is forwarded to the kernel modules (VFS and
FUSE). The Cloud4NetOrg storage module, when triggered, interacts with the metadata repository
(Figure 2) to locate the requested file andmanipulate the local indices. For accomplishing the request,
a returning flow is started when the file is placed at the local cache (first level). Since the cache is
implemented with a write-back approach, the storage module waits until the content is copied.

TheVFSovercomes the local space limitationbyproviding information (metadata) about all existing
files, even when they are not locally available or while remote synchronisation is in progress. Although
the available storage volume is smaller than the total required, the user still has knowledge about all
the files. This approach is aligned with recently launched commercial tools, such as Dropbox Smart
Sync [8].



8 G. ANDRIANI ET AL.

4.2. Observer and transportmodules

The observer module is in charge of running asynchronous tasks to update the local base metadata
when a change is detected on the remote cloud storage repositories, invalidating cache entries
when needed. In addition, the observer module calls the transport module for uploading not-yet-
synchronised files to the organisation and/or cloud repositories, and updates the metadata repository
after uploads are finished. It is worthwhile to highlight that Cloud4NetOrg is not designed to be
used without access to a cloud storage repository for long periods of time. While the local metadata
repository is complete, only a subset of files may be actually present (with their full content) in the L1
and L2 caches; in the case of disconnection, users can access only those cached files.

TheCloud4NetOrg transportmodule differs from traditional synchronisation architectures because,
once parameterized, it can interact with multiple external repositories (cloud providers or legacy
repositories). The transport module abstracts from others modules the existence of distinct external
repositories dealing with providers APIs and legacy repositories access. Moreover, this module iden-
tifies (by periodically probing) which repository has lower latency for synchronising the remote files
with the local cache. The default repository is the second-level cache. However, on running time,
Cloud4NetOrg verifies the latency to all available repositories with ICMP protocol. When the user has
access to the organisation’s private network and latency to private repository is lower than to cloud
provider, Cloud4NetOrg retrieves files from local storage. Otherwise, Cloud4NetOrg sets cloud-based
storage as default repository. In this sense, a user can be connected to an organisation’s private
network (second-level cache) and retrieve the file from a private repository, or be connected to the
Internet and retrieve the file directly from cloud storage.

4.3. Metadata repository

The metadata repository, managed by the observer module, indexes all shared files. Each file has only
one index in the metadata repository but can be replicated in the first- and in second-level cache
and in the cloud. This repository comprises information such as identifiers, object path (hierarchy),
object type (file or directory), object size, creation and modification dates, as well as a control of
completedandpendingoperations. In short, thedatabase structure comprises a single tablewithin few
attributes, specifically, id, name, created_date, last_modified_date, size, url, path, type, parent_reference,
cloud_pending, repository_pending, and operation. The attributes id, name, type, parent_reference_id,
and path are used for composing the filesystem structure (folders and files), while the remaining is
applied for controlling synchronisation between repositories.

According to the current state of objects (e.g. synchronised with the cloud, created, or synchro-
nisation pending), the observer module triggers sync calls. Cloud4NetOrg relies on the metadata
repository to mount the VFS, exporting to users a view of all existing shared files, regardless of their
physical location at the time of the request.

4.4. Read andwrite operations

Read and write operations are the most frequent demands managed by Cloud4NetOrg, and each
involves several steps. For a read operation, the execution flow is completely synchronous, while for
a write operation the file is synchronously written to the first-level cache and then asynchronously
propagated to the second-level cache and to cloud storage.

Figure 4(a) shows the flow for retrieving a file stored in the cloud.We first discuss the casewhere the
file is not cached andmust be transferred from cloud storage, and thenwe discuss how caching affects
the process. Actions performed by the operating system are represented by white boxes, while those
executed by Cloud4NetOrg are in grey. The read flow is started by an application request (step 1),
submitted to and translated by the VFS. In step 2, the request is sent to the Cloud4NetOrg storage
module, which searches the file in the metadata repository (step 3) and uses the metadata (returned
in step 4) to search the L1 cache (step 5). Since the file is not cached locally, in step 6 a Cache Miss
is returned, and the file is requested from the transport module (step 7), which in turn searches the



INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 9

Figure 4. Data flow for reading and writing a file using Cloud4NetOrg.

file in the L2 cache (step 8). Since the file also cannot be found in the L2 cache (step 9), it is retrieved
from the cloud provider (steps 10–11), and propagated back to the client (steps 12–17). As soon as the
transport module performs step 12 (L2 cache fill) and receives OK (step 13), it sends the same file to fill
the L1 cache (step 14).

If the file is already cached, it will be returned either in step 6 or step 9, depending whether it is in
the first- or in the second-level cache. If no metadata can be found in step 3, the metadata repository
returns a Not Found message and the read is aborted, returning an error to the user. As mentioned, all
steps are executed synchronously with a write-back cache.

For performing a write operation (Figure 4(b)), the request is submitted to VFS (step 1) and
forwarded to the Cloud4NetOrg storage module (step 2), which executes three tasks in parallel: (i)
writing to the L1 cache (step3); (ii) updating themetadata repository (step5), indicating that the file has
beenwritten to the cache and recording a pending synchronisationwith the external repositories; and



10 G. ANDRIANI ET AL.

Figure 5. Common components for Cloud4NetOrg-OneDrive and Cloud4NetOrg-DropBox.

(iii) wakingup theobservermodule (step 9). Once the storagemodule receives acknowledgments from
both the L1 cache and the metadata repository (steps 4 and 6), a response indicating success is sent
back to the user (steps 7–8). The synchronisation process is managed by the observer module, which
is in charge of scheduling an operation in the transport module (step 10). At this point, two tasks are
executed in parallel: (i) writing to the L2 cache (step 11); and (ii) synchronising with cloud repositories
(step 13). When the synchronisation is finished (step 14), the observer receives an acknowledgment
from the transport module (step 15), and updates the metadata repository (step 16).

Following the approach implemented on popular synchronisation clients, Cloud4NetOrg does not
address concurrency problems. When a concurrent operation is detected (e.g. two or more clients
writing the same file), the synchronisation tool just duplicates the file, recording the date and time of
the event. The final decision on version correctness is realised by the end user (the end-to-end design
principle for distributed systems [24]).

5. Experimental analysis

As a proof of concept, we implemented two prototypes, one integrating Cloud4NetOrgwith OneDrive
(Cloud4NetOrg-OneDrive) and another with DropBox (Cloud4NetOrg-DropBox). We performed an
experimental evaluation of these prototypes, comparing them with other traditional storage devices
and solutions. We first describe components composing both prototypes followed by our testbed.
Then, we assess the performance of the storage module and the efficiency gains provided by the
second-level cache compared to DropBox with LanSync. Finally, we model the scalability provided by
Cloud4NetOrg.

5.1. Prototypes implementation

The common components for composing both prototypes are presented in Figure 5. As a design
decision, Cloud4NetOrg prototypes only support Windows operating system. The development of
Linux-based prototypes is let as future work. The first component is the local storage, developed with
Dokan FUSE2 library, a usermode file system forWindows. This component allows Cloud4NetOrg to be
fully integrated with the Windows file system, abstracting file and directory operations such as create,
remove, update, among others.

The local storage communicateswith transport, observer anddatabase componentes. Thedatabase
component acts as the metadata repository where each file is accounted, and interacts only with the
local storage and observer modules. In turn, the observer component orchestrates all operations
requested by other components. For instance, when triggered by the local storage, the observer
coordinates with the provider’s API and the transport module the synchronisation between cloud and
local repositories. Finally, it asks the update of the corresponding metadata.

Complementary, the transport module is in charge of abstracting and dealing with different cloud
providers. With regarding the libraries and tools, the provider’s API is based on OneDrive SDK-C#3 and
DropBox SDK-DotNet,4 for OneDrive and DropBox, respectively.



INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 11

5.2. Testbed

Cloud4NetOrg prototypes andmarket-available synchronisation clientswere executed on a controlled
testbed, composed of virtual machines hosted by two HP EliteBook devices 840 with Core I5-4300U
2.5 GHz processor, 16 GB RAM, 500 GB SATA local disk, running Windows 10 and VirtualBox 5.1.8
virtualization software. Each virtual machine was configured with two vCPUs, 1 GB RAM and 80 GB
for storage. As a file system, NTFS was used with default settings. The devices were interconnected
by a switched Gigabit LAN, and a Wifi connection was configured with a D-LINK DWR-922 router
(144.4 Mbps). The writing tests on USB storage were performed on a 64 GB Kingston Data Travel 101
flash drive, accessible on the virtual machine. Some tests required an external network-based storage
device, which was implemented on a machine with the same hardware configuration.

5.3. Cloud4NetOrg storagemodule performance

This scenario quantifies the additional time required to write, read, and delete files introduced by the
Cloud4NetOrg storage module. The synchronisation time is a crucial metric for collaborative users as
it represents the latency for accessing a given file. This experiment represents a scenario where users
are in the same collaboration group and on the same LAN (e.g. Bob and Charles in Figure 1).

Following previous work [49], the input and output operations were performed with different file
sizes (1 MB, 50 MB, 100 MB and 200 MB), generated and submitted by the postmark tool [50]. For each
experiment, 100 rounds were performed (10 files are manipulated per round), and the graphs show
the median, maximum, minimum, first and third quartiles of total execution time. The tests were run
with five storage scenarios (composing the main scenario depicted in Figure 1):

• Local storage: Read and write operations were submitted to the same storage device in Bob’s
desktop (with NTFS) that the operating system is located on. This scenario is used as the baseline
for performance analysis.

• Wired LAN: Operations were carried out on a remote repository with CIFS file system (over NTFS),
on a Gigabit Ethernet LAN, termed organisation repository in Figure 1.

• Wifi LAN: Operations were performed on a organisation repository (CIFS over NTFS) accessed
through an access point, configured in infrastructure mode with maximum bandwidth of
144.4 Mbps. For this scenario, LAN2 is controlled by the Wifi access point.

• USB storage: Read and write calls were performed on a flash drive connected to Bob’s desktop
by a USB 2.0 interface (FAT32).

• Dokany filesystem [51]: Dokany is a C++ library for implementing FUSE file systems on Win-
dows. Since our prototypes are built over Dokany, this scenario provides a baseline for their
performance.

The results are shown in Figure 6; data for our prototypes are represented asCOD for Cloud4NetOrg-
OneDrive and CDB for Cloud4NetOrg-DropBox. For 1 MB files, LAN storage performs almost as well as
local storage, but has higher variability. COD is nearly 20% better than CDB, and both prototypes are
outperformed by USB storage. For files larger than 1 MB, the user-mode file systems (COD, CDB, and
Dokany) have higher execution time than both local and LAN storage, and lower than USB and WiFi;
for these file sizes, both Cloud4NetOrg prototypes had roughly equivalent performance regardless of
the cloud service provider used. Overall, WiFi storage had the higher execution times for all file sizes,
and exhibited higher variability. The times for Dokany (the baseline for a user space file system) were
between 33 and 50% higher than the numbers for LAN storage across all file sizes.

In short, this analysis indicates that Cloud4NetOrg induces low overhead compared to Dokany,
and does not introduce an architectural bottleneck that could increase the synchronisation latency
perceived by clients, even when all files must be retrieved from the second-level cache.



12 G. ANDRIANI ET AL.

Figure 6. Cloud4NetOrg storage module performance compared with other storage solutions.

5.4. Cloud4NetOrg-DropBox vs. DropBox

After individually quantifying the storagemoduleperformanceofCloud4NetOrg, adiscussion is carried
out comparing the full architecture performance with the DropBox client. For this experiment, all
components of Cloud4NetOrg are involved: storage,metadata repository, transportmodule, observer,
and external storage.

This scenario corresponds to an organisation that has several subnets as described in Figure 1.
Besides the large use nowadays for synchronising fileswith cloud storage repositories, theDropBox so-
lution (version 14.4.19) was selected to serve as baseline for comparison due to the implementation of
optimization techniques. DropBox natively uses data compression and deduplication before transfer
from/to cloud and offers an optional module for LAN synchronisation (LanSync).

DropBox LanSync decreases the data flow from/to the cloud provider by transferring files directly
between twoDropBox clients located on the same subnet. In this sense, the comparison highlights the
two levels of caching implemented by Cloud4NetOrg versus DropBox LanSync. The first level resides
on a client’s local disk, while the second one resides on the local network (which can be disabled for
debugging and evaluation purposes). The results were collected for Cloud4NetOrg, with and without
the second-level cache; for the DropBox clients in the same subnet, when LanSync can act; and for
DropBox clients on different subnets, where LanSync is not applicable.

In Figure 7, Cloud4NetOrg without second-level cache is identified by CDB while a version with
cache (accessible by the private organisation network link) is labeled as CDB-L2. The file size under
analysis is concatenatedwith the label. Figure 7(a) shows the resultswith clients placed in twodifferent
domains. This scenario is illustrated by Figure 1 where Alice, placed in Paris, is collaborating with Bob,
placed in New York, on a shared set of files. Initially, with 100 and 200 MB files, the waiting time for
DropBox users is 67% higher compared to Cloud4NetOrg. Considering the use of the organisation
repository as a cache, Cloud4NetOrg with second-level cache decreased by 14% the synchronisation



INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 13

Figure 7. Time required for a client to synchronise a file updated by another user.

time for 200 MB. This low impact is occasioned by the benchmarking tool: the number of read and
write operations performed by postmark is similar, representing a worst-case sharing scenario, as the
second-level cache is updated but the files are immediately removed.

Figure 7(b) shows the time required for a client to synchronise a file that has been updated
by another user. The results for Cloud4NetOrg (CDB-L2) have the second-level cache enabled. For
DropBox, we consider two scenarios. In the first scenario (represented by DBL), both users are
in the same broadcast domain, and so LanSync is used; this corresponds to Bob and Charles in
Figure 1. In the second scenario (DB), the users are in different subnets, which precludes the usage
of LanSync; this corresponds to Alice and Bob in Figure 1. The results for DBL point out a 93%
performance improvement compared to DB, showing the efficiency of LanSync in this scenario.
Cloud4NetOrg is more efficient than DropBox (with or without LanSync), especially for large files,
due to lower synchronisation latency. The reason is that LanSync only allows file synchronisation
between clients when a file is available (after the upload is finished), while Cloud4NetOrg decreases
the delay by starting the synchronisation to other clients immediately after sending a control message
(updating the metadata repository). Finally, when the second-level cache is available, the placement
of collaboration users affects the execution time of Cloud4NetOrg. In the first scenario (Figure 7(a)),
Cloud4NetOrg needs to transfer data between Paris andNewYork to fill the L2 cache, and its execution
time is worse than in the second scenario (Figure 7(b)).



14 G. ANDRIANI ET AL.

When using the DropBox synchronisation client, a user only has access to a file (including its
metadata) after it has been transferred to the local disk. This may lead to unneeded delays and to
wasting network bandwidth and disk space if files are brought in from the cloud and never accessed by
the user on that device, which is likely in large repositories. In Cloud4NetOrg, the metadata repository
always has information about all files. This provides Cloud4NetOrg users with knowledge about all the
files available in the cloud provider without having to pre-populate either of the two cache levels. On
the flip side, Cloud4NetOrg users cannot work off-line, except with previously cached files.

To quantify the impact of these distinct approaches, another experiment was conducted based on
different usage profiles. We measured the time it takes for a user to be able to access between 10 and
100% of the files in a directory hierarchy, assuming none of the files are on the local disk. The results
depicted in Figure 8 indicate that, for a DropBox client, the usage profile has no impact on total access
time, as all files and metadata are transferred from the cloud to the local device, regardless of usage.
Therefore, the time measured for DropBox represents the total time required to completely visualise
the directory contents. The transfer time for Cloud4NetOrg clients varies according to the directory
size (10MB, 500MB, 1 GB and 2 GB) and the fraction of files actually accessed. The differences between
DropBox and Cloud4NetOrg are larger when files are available on the LAN (Figure 8(a)) thanwhen they
need to be transferred from the cloud (Figure 8(b)). This indicates that the L2 cache in Cloud4NetOrg
provides better performance than DropBox, even with LanSync enabled.

To summarise, our experiments show that, for all collaborative users in Figure 1, Cloud4NetOrg de-
creases Internet link usage, requires less space in local storage, and minimises the waiting time for file
synchronisation.

5.5. Cloud4NetOrg scalability

A cloud storage characterization study performed by Gonçalves et al. on academic campuses [41]
highlighted that 333 users had 3million of files totaling approximately 1.38 TB of data. If Cloud4NetOrg
was usedwith a repository with the same characteristics, all files would be indexed andmade available
to users, consuming only the storage space required for the metadata repository, without need for a
previous download and synchronisation phase. In the metadata repository, each file is represented by
a register in the database and requires approximately 787 bytes. Thus, the total metadata repository
volume can be estimated by multiplying the register’s size by the number of files. For indexing 3
million files, the Cloud4NetOrg-OneDrive prototype consumes close by 2.2 GB, 0.16% of total storage
volume.

In the Cloud4NetOrg architecture, the first-level cache is configurable and independent of the
storage capacity of the second-level cache and external repositories. In this sense, the number of
download and upload events (and volume) from/to external storage is decreased as only actually
requested files are synchronised. In addition, the second-level cache reduces the Internet traffic for
multisite organisations as collaborative users interconnected by a private network can share files via a
local cache repository.

The volume of data synchronised between an L2 cache and cloud repositories (i.e. data traversing
an Internet link) can be modeled using the equation v = be · α(1 + n), where be is the volume of
bytes transferred from/to the cloud, n the number of clients to synchronise, and α ≤ 1 is a coefficient
of data compression. For popular clients (DropBox and OneDrive), the number of collaborative users
has direct impact on the Internet link traffic, while for Cloud4NetOrg, v is given by v = be · α (thus,
it is independent of the number of collaborative clients). To illustrate, Table 1 presents results given
by the model for an organisation with varying numbers of employees sharing an Internet link. The
estimated results show the volume of traffic for different numbers of collaborative users. We assumed
no compression (α = 1), and that each employee writes on average 7 MB to the cloud (this amount is
taken from [41]); thus, be = 7 × Employees. Cloud4NetOrg has constant Internet traffic data volume
independent of the number of collaborative users. In the worst case, with 100 collaborative users,



INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 15

Figure 8. Access time comparison between DropBox and Cloud4NetOrg clients for different usage profiles.

Table 1. Data volume sent to a cloud repository (GB).

Collaborative users (n)
Employees 2 20 100 Cloud4NetOrg

1000 20 143 690 7
2000 41 287 1380 14
5000 102 717 3452 35
8000 164 1147 5523 56
10000 295 1435 6904 70

popular synchronisation clients would consume on the order of 6, 904 GB, while Cloud4NetOrg would
require only 70 GB.



16 G. ANDRIANI ET AL.

6. Conclusion

The Internet has revolutionised the workflow of modern organisations. Freelancers, home-office,
mobile users, and other remote collaborations are commonly found in companies from different
business sectors. In this context, cloud-based storage has been acting as a driving force, increasing the
availability of files, which are delivered as services. Moreover, tools for file synchronisation with cloud
repositories as commonly available and well-accepted by home users.

The present work reviewed the issues and challenges related to the adoption of such cloud-based
services bymultisite organisations. The current synchronisation clients lack technologies for enterprise
collaborative users. The collaborative users tend to be concentrated in private networks accessing
legacy storage systems. Eventually, the local repositories are synchronised atop private networks. In
this sense, the present work proposed Cloud4NetOrg, an architecture for synchronising cloud file
storage and organisation repositories. Cloud4NetOrg uses the existing repositories for composing a
two-level cache architecture, while the private network is used for decreasing the Internet traffic. Both
optimizations decrease the latency perceived by clients while accessing files.

Two prototypes were developed indicating that Cloud4NetOrg is compatible with public syn-
chronisation tools (OneDrive and DropBox). The experimental results indicate a low overhead of
Cloud4NetOrg storage module, and a promising usage on topologies with multiple subnetworks.
Compared to DropBox, Cloud4NetOrg decreases the synchronisation latency by 67% for 100 and
200 MB files. Although efficient for the experimental scenarios analysed, in future work we aim to
investigate theapplicationof robust algorithms for enhancedcachecoherenceandcontrol. In addition,
we aim to develop a multi-provider prototype simultaneously accessing files from different cloud
repositories.Wealso intend to improve the transportmodule inorder to further reduce synchronisation
traffic.

Notes

1. An earlier version of this paper circulated in Portuguese only [14] comprising an initial architecture proposal and
preliminary results.

2. https://github.com/dokan-dev/dokany/wiki/FUSE
3. https://github.com/OneDrive/onedrive-sdk-csharp
4. https://github.com/dropbox/dropbox-sdk-dotnet

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was developed at the Laboratory of Parallel and Distributed Programming (LabP2D), and was partially
supported by UDESC and FAPESC.

ORCID

Guilherme Koslovski http://orcid.org/0000-0003-4936-1619
Mauricio Pillon http://orcid.org/0000-0001-7634-6823

References

[1] Zhang Q, Cheng L, Boutaba R. Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl.
2010;1:7–18.

[2] DropBox. DropBox, Tech. rep., Dropbox Corporation; 2017. Available from: https://www.dropbox.com/
[3] Drive G. Google Drive, Tech. rep., Google Driver Corporation; 2017. Available from: https://www.google.com/drive/
[4] OneDrive. OneDrive, Tech. rep., One Drive Corporation; 2017. Available from: https://onedrive.live.com/

https://github.com/dokan-dev/dokany/wiki/FUSE
https://github.com/OneDrive/onedrive-sdk-csharp
https://github.com/dropbox/dropbox-sdk-dotnet
http://orcid.org
http://orcid.org/0000-0003-4936-1619
http://orcid.org
http://orcid.org/0000-0001-7634-6823
https://www.dropbox.com/
https://www.google.com/drive/
https://onedrive.live.com/


INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 17

[5] Gonçalves G, Drago I, Silva APC, et al. Analyzing the impact of dropbox content sharing on an academic network.
In: Proceedings of the Brazilian Symposium on Computer Networks and Distributed Systems (SBRC); SBRC; 2015. p.
100–109.

[6] Gonçalves G, Drago I, Silva APC, et al. Characterizing and modeling the dropbox workload. In: Proceedings of the
Brazilian Symposium on Computer Networks and Distributed Systems (SBRC). Florianópolis, Brazil: SBRC; 2014.

[7] Drago I, Mellia M, Munafo MM, et al. Inside dropbox: understanding personal cloud storage services. In: Proceedings
of the Internet Measurement Conference (IMC); Boston, MA, USA: IMC; 2012.

[8] Dropbox. Smart Sync, Tech. rep.; 2017. Available from: https://www.dropbox.com/business/smartsync
[9] Google. G Suite for Teams, Tech. rep.; 2017. Available from: https://gsuite.google.com/solutions/teams/

[10] VrableM, Savage S, Voelker GM. BlueSky: a cloud-backed file system for the enterprise. In: Proceedings of the USENIX
Conference on File and Storage Technologies (FAST); San Jose, CA: FAST; 2012.

[11] Bessani A, Mendes R, Oliveira T, et al. SCFS: a shared cloud-backed file system. In: Proceedings of the USENIX Annual
Technical Conference (USENIX ATC); Philadelphia, PA: USENIX; 2014. p. 169–180.

[12] Douceur JR, BoloskyWJ. A large-scale study of file-system contents. In: Proceedings of the ACM SIGMETRICS; Atlanta,
GA, USA: ACM; 1999. p. 59–70.

[13] Hofmann P, Woods D. Cloud computing: the limits of public clouds for business applications. IEEE Internet Comput.
2010;14:90–93.

[14] Andriani G, Koslovski G, Pillon MA. Sincronização de Arquivos entre Nuvens de Armazenamento e Repositórios
Geograficamente Distribuídos, in Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC)
2016. SBRC, Salvador, Bahia: Maio; 2016.

[15] Katzer M, Crawford D. Office 365: moving to the cloud. In: Office 365. Springer; 2013. p. 1–23.
[16] Mell P, Grance T. The NIST definition of cloud computing. In: NIST SP 800–145, Technical Report. National Institute of

Standards and Technology; 2011.
[17] Naldi M, Mastroeni L. Cloud storage pricing: a comparison of current practices. In: Proceedings of the International

Workshop on Hot Topics in Cloud Services; Prague, Czech Republic: ACM; 2013.
[18] Shepler S, Eisler M, Robinson D, et al. Network file system (NFS) version 4 protocol; RFC 3530, Technical Report. 2003.
[19] Microsoft Corporation. Common Internet File System (CIFS) protocol; 2014. Available from; http://msdn.microsoft.

com/en-us/library/ee442092.aspx
[20] French SM and Samba Team. A new network file system is born: comparison of SMB2, CIFS and NFS. In: Proceedings

of the Ottawa Linux Symposium (OLS). Ottawa, Canada: OLS; 2007. p. 131.
[21] Dukkipati N, Mathis M, Cheng Y, et al. Proportional Rate Reduction for TCP. In: Proceedings of the 2011 ACM

SIGCOMM Conference on Internet Measurement Conference, IMC ’11, Berlin, Germany; New York, NY, USA: ACM;
2011. p. 155–170.

[22] StallingsW. Foundations ofmodern networking: SDN, NFV, QoE, IoT, and Cloud. 1st ed. Addison-Wesley Professional;
2015. ISBN: 0134175395 and 978-0134175393.

[23] Schlinker B, Kim H, Cui T, et al. Engineering egress with edge fabric: steering oceans of content to the world. In:
Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM 2017; August
21–25, 2017; Los Angeles, CA, USA; 2017. p. 418–431.

[24] Saltzer JH, Reed DP, Clark DD. End-to-end arguments in system design. ACM Trans Comput Syst. 1984;2:277–288.
[25] Smith DM, Petri G, Natis YV, Scott D, Warrilow M, Heiser J, Bona A, Toombs D, Yeates M, Bova T, Lheureux BJ. Cloud

computing affects all aspects of IT. Gartner Group: Tech. rep; 2013.
[26] FUSE-J. FUSE-J, Tech. rep.; 2017. Available from; https://sourceforge.net/projects/fuse-j/
[27] Nasuni. UniFS – a true global file system, Tech. rep., Nasuni Corporation; 2017. Available from; https://www.nasuni.

com/what-is-a-global-file-system/
[28] TwinStrata. TwinStrata, Tech. rep., TwinStrata Corporation; 2017. Available from: https://www.emc.com/domains/

cloudarray/index.htm
[29] Panzura. Hybrid Cloud NAS, Tech. rep., Panzura Company; 2017. Available from: http://panzura.com/solutions/

hybrid-cloud-nas/
[30] StorSimple. StorSimple, Tech. rep., StorSimple Corporation; 2017. Available from: http://www.storsimple.com/
[31] Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP). New York, NY; 2003. p. 29–43.
[32] Muniswamy-Reddy KK, Macko P, Seltzer M. Provenance for the cloud. In: Proceedings of the USENIX Conference on

File and Storage Technologies (FAST); San Jose, CA; 2010.
[33] Duan H, Yu S, Mei M, et al. CSTORE: a desktop-oriented distributed public cloud storage system. Comput Electr Eng.

2015;42:60–73.
[34] Shvachko K, Kuang H, Radia S, et al. The hadoop distributed file system. In: Proceedings of the IEEE Symposium on

Mass Storage Systems and Technologies (MSST). Incline Village, Nevada; 2010. p. 1–10.
[35] Kistler JJ, SatyanarayananM. Disconnected operation in the Coda file system. ACM Trans Comput Syst. 1992;10:3–25.
[36] Chang C, Sun J, Chen H. Coral: a cloud-backed frugal file system. IEEE Trans Parallel Distrib Syst. 2016;27:978–991.
[37] Machado GS, Bocek T, Ammann M, et al. A cloud storage overlay to aggregate heterogeneous cloud services. In:

38th IEEE Conference on Local Computer Networks (LCN); Sydney, Australia: IEEE; 2013. p. 1–12.

https://www.dropbox.com/business/smartsync
https://gsuite.google.com/solutions/teams/
http://msdn.microsoft.com/en-us/library/ee442092.aspx
http://msdn.microsoft.com/en-us/library/ee442092.aspx
https://sourceforge.net/projects/fuse-j/
https://www.nasuni.com/what-is-a-global-file-system/
https://www.nasuni.com/what-is-a-global-file-system/
https://www.emc.com/domains/cloudarray/index.htm
https://www.emc.com/domains/cloudarray/index.htm
http://panzura.com/solutions/hybrid-cloud-nas/
http://panzura.com/solutions/hybrid-cloud-nas/
http://www.storsimple.com/


18 G. ANDRIANI ET AL.

[38] Otixo. Otixo, Tech. rep.; 2017. Available from: http://www.otixo.com
[39] oDrive. ODrive, Tech. rep.; 2017. Available from; http://www.odrive.com/
[40] Drago I, Bocchi E, Mellia M, et al. Benchmarking personal cloud storage. In: Proceedings of the Internet Measurement

Conference (IMC); Barcelona, Spain: ACM; 2013.
[41] Gonçalves G, Drago I, Silva APC, et al. Modeling the Dropbox client behavior. In: Proceedings of the IEEE International

Conference on Communications (ICC), June. Sydney, Australia: IEEE; 2014. p. 1332–1337.
[42] Tate J, Lucchese F, Moore R. Introduction to storage area networks. IBM Redbooks; 2006. ISBN: 0738428345 and

978-0738428345.
[43] Wang H, Shea R, Wang F, et al. On the impact of virtualization on dropbox-like cloud file storage/synchronization

services. In: Proceedings of the 20th International Workshop on Quality of Service; Coimbra, Portugal: IEEE; 2012.
[44] Li Z, Wilson C, Jiang Z, et al. Efficient batched synchronization in Dropbox-like cloud storage services. In: Eyers D,

Schwan K, editors. Middleware 2013. Vol. 8275, Lecture notes in computer science. Berlin Heidelberg: Springer; 2013.
p. 307–327.

[45] LANSync. LANSync, Tech. rep.; 2017. Available from: https://www.dropbox.com/en/help/137
[46] Houston D, Ferdowsi A. Network folder synchronization. US Patent 8,825,597. 2014.
[47] Besen A, Cheong H, Mueller H, et al. Sharing and synchronizing electronically stored files. US Patent 8,949,179. 2015.
[48] FUSE. Fuse, Tech. rep.; 2017. Available from: http://fuse.sourceforge.net/
[49] Kanaujia V, Giridhar C. FUSEing Python for development of storage efficient filesystem. Python Paper, Technical

Report. 2012;7:4.
[50] Katcher J. Postmark: a new file system benchmark, Tech. Rep. TR3022. Network Appliance; 1997.
[51] Dokany. Dokany, Tech. rep.; 2017. Available from: https://github.com/dokan-dev/

http://www.otixo.com
http://www.odrive.com/
https://www.dropbox.com/en/help/137
http://fuse.sourceforge.net/
https://github.com/dokan-dev/

	1. Introduction
	2. Concepts, issues and motivations
	3. Related work
	4. Cloud4NetOrg architecture
	4.1. Storage module
	4.2. Observer and transport modules
	4.3. Metadata repository
	4.4. Read and write operations

	5. Experimental analysis
	5.1. Prototypes implementation
	5.2. Testbed
	5.3. Cloud4NetOrg storage module performance
	5.4. Cloud4NetOrg-DropBox vs. DropBox
	5.5. Cloud4NetOrg scalability

	6. Conclusion
	Notes
	Disclosure statement
	Funding
	ORCID
	References

