
Exploring the virtual infrastructure service concept
in Grid’5000

Pascale Vicat-Blanc Primet
INRIA- ENS Lyon

pascale.primet@ens-lyon.fr

Fabienne Anhalt
INRIA - ENS Lyon

fabienne.anhalt@ens-lyon.fr

Guilherme Koslovski
INRIA - ENS Lyon

guilherme.koslovski@ens-lyon.fr

Abstract—The convergence of communication and computa-
tion portrays a new vision of the services that the Internet
can bring to users. There is an emerging need for isolated and
protected virtual resource aggregates composed by the sharing in
time and space of a set of physical entities. This paper proposes
a flexible and open framework to implement this service offering
a dynamic access to virtual private interconnected capacities.
We develop the underlying virtual private execution infrastructure
concept and propose a model to control their underlying net-
works. We illustrate these ideas by describing the adaptation of
our HIPerNET software to the context of the experimental large-
scale Grid’5000 platform, thus allowing isolated and customised
experiments. The goal of the designed service is to provide
computer-science researchers with right-timed and right-sized
experimental virtual infrastructures. Preliminary experimental
results highlight the potential and challenges of this approach.

I. MOTIVATIONS

Today, the usage of the Internet is fundamentally changing.
Internet services are constructing data centers of unprece-
dented scale to offer a large diversity of cloud services for
research, data mining, email hosting, maps and other features.
This evolution leads to the convergence of communication and
computation, and portrays a new vision of the services that
the Internet can bring to users. According to this concept, the
Internet will not remain ”only” a huge shared and unreliable
communication facility between edge hosts enabling real time
contact and data exchanges. Instead, it will become a world-
wide reservoir of interconnected resources that can be shared
and reserved. We envision the Internet will increasingly embed
and expose its computational and storage resources, as well as
its communication and interconnection capacities, in order to
be able to meet the requirements of emerging applications.

Large-scale experimental facilities are prefiguring this new
way of sharing IT and computing resources and highlight
the need for on-demand customizable infrastructures. Indeed,
many computer science projects in network or distributed sys-
tems require experiments with modified operating systems and
communication protocols exposed to realistic and reproducible
conditions. Computer scientists need to perform distributed
experiments that run on many sites at the same time. Generally
the experiments are interactive and large-scale: they run on
many nodes, but for a relatively short time (a few hours).
This raises the need for time-limited access to customized
experimental platforms. As an example, PlanetLab [1] allows
researchers to run experiments on a large scale under real-

world conditions. Using distributed virtualization, every user
can allocate a slice of PlanetLab’s network-wide hardware re-
sources for experiments in file sharing and network-embedded
storage, content-distribution networks, routing and multicast
overlays, network measurement tools, etc. Grid’5000 [2],
another experimental facility, gathers large scale clusters and
gives access to 5000 CPUs distributed over 9 sites and inter-
connected by 10 Gbps-dedicated lambdas. Grid’5000 provides
a deep reconfiguration mechanism allowing researchers to
deploy, install, boot and run their specific software images,
possibly including all the layers of the software stack. This
reconfiguration capability led to the experiment workflow
followed by Grid’5000 users: reserve a partition of Grid’5000,
deploy a software image on the reserved nodes, reboot all
the machines of the partition using the software image, run
the experiment, collect results and release the machines.
Grid’5000 allows users to reserve the same set of resources
across successive experiments, to run their experiments in ded-
icated nodes (obtained by reservation), and to install and run
their own experimental condition injectors and measurement
software. However, predictable connectivity with controlled
jitter and dedicated throughput is not currently provided within
Grid’5000. These properties can be delivered to the application
only through careful direct control of the networking resources
as it is proposed in this paper.

We argue that exposing bandwidth as well as processing
and storage capacities within the network will help to support
the ever-growing spectrum of communication patterns and
ways to use the Internet. Extending the approach adopted by
researchers in PlanetLab or Grid’5000, we propose the virtual
infrastructure service layer, to homogeneously decouple the
physical infrastructure from the high-level service-plane. In
particular, this paper investigates a model and the mechanisms
required for flexibly sharing the physical infrastructure of
Grid’5000 considering the network backbone as a first-class
resource.

Section II defines the virtual private execution infrastructure
model which portrays a new way of sharing networks and
end resources. In Section III, the adaptation of this model
to Grid’5000 for virtual experimental infrastructures orches-
tration is presented. In Section IV preliminary experimental
results are given to illustrate the interest as well as technical
issues. Related works are reviewed in Section V. Section VI
concludes this work.

II. A NEW WAY OF SHARING AND CONTROL

A. Extending the virtualization concept
Virtualization enables an efficient separation between ser-

vices or applications and physical resources. For example,
the virtual machine paradigm is becoming a key feature
of servers, distributed systems, and grids as it provides a
powerful abstraction. It has the potential to simplify the
management of resources and to offer a great flexibility in
resource usage. Each Virtual Machine (VM) a) provides a
confined environment where non-trusted applications can be
run, b) allows establishing limits in hardware-resource access
and usage, through isolation techniques, c) allows adapting
the runtime environment to the application instead of porting
the application to the runtime environment (this enhances
application portability), d) allows using dedicated or optimized
OS mechanisms (scheduler, virtual memory management, net-
work protocol) for each application, e) allows the applications
and processes running within a VM to be managed as a
whole. Extending these properties to the service level through
the concept of ”infrastructure as a service”, the abstraction
of the hardware enables the creation of multiple, isolated,
and protected virtual aggregates on the same set of physical
resources by sharing them in time and space. In other words,
with representation in VMs, it is possible that a physical
resource (node) hosts VMs of different virtual infrastructures.
The virtual infrastructures are logically isolated by virtual-
ization and can provide customized services to each virtual
infrastructure, for example in terms of bandwidth provisioning,
channel encryption, addressing, protocol version. The isolation
also provides a high security level for each infrastructure.
Moreover, virtualizing routers and switching equipments en-
ables the customization of packet routing, packet scheduling
and traffic engineering for each virtual network crossing it. The
customization of the router’s function offers a high flexibility
for each infrastructure.

B. Virtual Private Execution Infrastructures
In this context, we define the Virtual Private eXecution

Infrastructure (VPXI) concept as the aggregation of virtual
computing resources interconnected by a virtual private over-
lay network. Ideally, any user of a VPXI has the illusion
that he is using his own dedicated system, while in reality
he is using multiple systems, part of the global distributed
infrastructure. The resulting virtual instances are kept isolated
from each others and the members of a VPXI have a consistent
view of a single private TCP/IP overlay, independently from
the underlying physical topology. A VPXI can span multiple
networks belonging to disparate administrative domains. In
virtual infrastructures, a user can join from any location and
use the same TCP/IP applications he was using on the Internet
or its Intranet.

A VPXI can be formally represented as a graph in which a
vertex is in charge of active data processing functions and an
edge in charge of moving data between vertices. Figure 1 illus-
trates this concept, representing a virtual infrastructure com-
posed by the aggregation of virtual machines interconnected

Figure 1. Example of a VPXI composition using graph notation.

via virtual channels. It shows two virtual routers (vertices rvA
and rvB) which are used to interconnect and perform the
network control functions among the other virtual resources
(vertices rv 1 to 8). The virtual routers can independently
forward the traffic of the different virtual infrastructures which
share the same physical network. Each edge represents a
virtual link used to interconnect a pair of virtual resources,
which contains different configurations, as lv1 and lv2.

A VPXI specification comprises the recursive description of:
a) the individual end resources or resource aggregates (clus-
ters) involved, b) the performance attributes for each resource
element (capacity), c) the security attributes for each resource
element (access control, confidentiality level), c) the commer-
cial attributes for each resource element (maximum cost), d)
the temporal attributes for each resource element (time window
for provisioning), e) elementary functions, which can be
attributed to a single resource or a cluster, for example: request
of computing nodes, storage nodes, visualization nodes, or
routing nodes, f) the specific services provided by the resource
(data mining application, data compression software), g) the
topology of the virtual network, including the performance
characteristics (typically bandwidth and latency), the security,
commercial, and temporal attributes of the virtual channels. A
VPXI has a limited lifetime which can span from a few hours
to several months. To support the specifications of these VPXI
(virtual environments), the VXDL language has been studied
and developed [3].

C. VPXRouters

Within the VPXI design, we propose virtual routers called
VPXRouters which are fully personalizable components of
the VPXIs. These virtual routers are hosted on open high-
performance physical servers used as software routers (that
we call HPSRouters, for High Performance Software Routers),
each one running in an isolated virtual machine instance.
In this approach, all the traditional network planes (data,
control and management) are virtualized. Therefore users can
use any protocol and control mechanism on their allocated
virtual routers. They can deploy customized routing protocols,
configure the packet-queueing disciplines, packet filtering and
monitoring mechanisms they want. Also, VPXRouters repre-
sent strategic points of the network for rate control as they

concentrate aggregated VPXI traffic. By limiting the rate and
policing the traffic at the VPXRouters, the traffic of VPXIs
can be controlled and the user is provided with fully- isolated
execution infrastructures. The benefit of having controlled
environments is twofold: it gives the users strong guarantees,
while allowing the network provider to better exploit the
network by sharing it efficiently, but differently, between users.

D. Embedding Virtual Infrastructures

Using VXDL language users can specify the desirable
configuration and network composition of VPXIs. This request
must be interpreted and reserved on available distributed
resources. This virtual infrastructure composition corresponds
to a graph embedding problem, where a graph which describes
the virtual infrastructure must be allocated on a graph which
describes the physical infrastructure. As it is not the purpose
of this paper, the general embedding problem is not studied
here but just presented.

Virtual and physical graphs are of the form G(V,E) where
vertices V are a set of resources interconnected by a set of
links (edges represented by E). We consider that each resource
or link can have a capacity represented by cv and cp for
virtual and physical components respectively. Capacities can
be interpreted as configurations like latency and bandwidth
for links, or memory size, CPU speed, and physical location
for resources. To illustrate the embedding of a VPXI, we
select the VPXI 2 from figure 4 and create a possible spec-
ification (as presented in Figure 2.a) which represents three
virtual resources (rv1, rv2 and rv3) and three virtual routers
(rvA, rvB and rvC), interconnected by some virtual links
(lv1, lv2, lv3, lv4, lv5 and lv6). In this scenario, every resource
and link has a different capacity. Analyzing Figure 2.b, we can

Figure 2. a) graph representation of VPXI 2 (figure 4) and b) example of
an embedding solution.

observe an embedding alternative for VPXI 2. In this case,
each site received one virtual router and one virtual resource.
The network topology specified in 2.a was also allocated. This
scenario illustrates a VPXI specification which has different
network capacities (cv = 2, cv = 3 and cv = 5). These
capacities can correspond to different bandwidth specifications
that must be allocated and controlled.

The result of the preceding embedding example is annotated
in a map form as presented in table I. The first line represents

Component Embedding
resources < rv1, rp2, 2, ∆t0 >

< rv2, rp9, 4, ∆t0 >
< rv3, rp7, 6, ∆t0 >
< rvA, rp4, 8, ∆t0 >
< rvB, rp5, 8, ∆t0 >
< rvC, rp10, 8, ∆t0 >

links < lv1, lp13, 5, ∆t0 >
< lv2, lp14, 3, ∆t0 >
< lv3, lp15, 5, ∆t0 >
< lv4, lp2, 2, ∆t0 >
< lv5, lp5, 2, ∆t0 >
< lv6, lp12, 2, ∆t0 >

Table I
EMBEDDING SOLUTION FOR THE EXAMPLE IN FIGURE 2.

resources notation and the second one represents links nota-
tion. In this example, only one period ∆t0 was used which
means that all the resources and links must be reserved and
used at the same time with a defined duration.

III. ADAPTATION TO GRID’5000 EXPERIMENTS

To allow users to specify, reserve, deploy and manage
virtual private execution infrastructures over large-scale dis-
tributed systems, we are developing the HIPerNET1[4] soft-
ware. We describe here how the HIPerNET software is cur-
rently being adapted to Grid’5000 [2], the national experi-
mental shared facility, to enable reproducible experiments on
customizable topologies. Figure 3 represents the Grid’5000

Figure 3. Grid’5000 infrastructure with HPSRouters.

testbed with its nine sites interconnected with 10 Gb/s dedi-
cated lambdas. An HPSRouter is inserted on each site. These
machines host VPXI’s VPXRouters to support diverse routing
strategies and innovative transport protocols. Another goal is
to control the bandwidth-sharing of the physical inter-site links
for isolated, controlled, and reproducible experiments. VPXIs

1http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html

http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html

can be reserved and deployed over several geographically dis-
tributed sites. Figure 4 represents an example of three VPXIs,
extended over three distinct sites. Each site is provided with a
HPSRouter hosting one VPXRouter per VPXI. Those virtual
routers are gateways, forwarding all the traffic of a VPXI
between the site’s LAN and the interconnection network. With

Figure 4. Allocation of 3 VPXIs in the Grid’5000 infrastructure.

this model, the VPXRouters are able to control the traffic of the
VPXIs and their bandwidth sharing of the physical links over
the backbone network. The VPXRouters are interconnected
over the backbone across several hops via IP-tunnels giving
the VPXI user the illusion that the different parts of his VPXI
are directly interconnected by a single router, even though they
are in reality located on distant physical locations.
To face scalability issues, we assume that at a given time, only
a limited number of experiments will request for a confined
VPXI and a dedicated channel (for example, 10%=1 Gb/s).
The others, which are considered not ”communication sensi-
tive”, will run without any network control in the classical and
fully-transparent best effort mode. The aggregated bandwidth
allocated to the VPXI is limited to a configurable percent-
age of the access link’s capacity. The shaped VPXI-traffic
leaving the physical routers hosting the VPXRouters is fully
isolated from the remaining best-effort traffic of Grid’5000. To
guarantee this, the switch where the VPXRouter-traffic and
the Grid’5000 best-effort traffic come together distinguishes
the two traffics and gives a strict priority to the VPXRouter-
traffic. The background traffic, i.e. all the traffic that does not
require specific treatment, is forwarded through the classical
best effort path.

The following sections detail the different building blocks
for the implementation of this model.

A. Virtual Router

During the deployment of a VPXI, a VPXRouter is created
and started on each dedicated physical router located on a site
hosting some of the VPXI’s virtual resources.

1) VPXRouter Architecture: A VPXRouter consists of a
high performance physical machine (HPSRouter) running
Xen and owning two 10 Gb/s network interface cards. The

VPXRouters consist in software routers implemented inside
virtual machines. We chose the Xen technology because of
the offered flexibility: distinct operating systems with distinct
kernels can run in each virtual machine and the user is
provided with full configurability to implement individual
virtual networks. Figure 5 shows an example of an HPSRouter
hosting two VPXRouters. These VPXRouters have to share the
physical resources of the machine and additional processing
is necessary. However, the data plane virtualization with Xen
causes the forwarded packets to go through a longer path than
in native-Linux software routers.

Figure 5. Model of an HPSRouter hosting two VPXRouters.

2) Virtual routing: VPXRouters control the rate and adapt
the routing in order to satisfy the quality of service re-
quirements of each VPXI, as illustrated in the example be-
low(Figure 6). Latency sensitive traffic and bandwidth-aware

Figure 6. Example of bandwidth allocation for latency-sensitive and high-
bandwidth flows.

traffic are routed on different paths. 1 Gb/s links are allocated
between each of the three VPXRouters to transmit latency
sensitive traffic. High-throughput traffic is redirected over Site
2, requiring to allocate additional 5 Gb/s on only 2 links
instead of 3. As presented in [5], this is an example of
efficient channel provisioning combining routing and traffic
engineering.

B. Rate allocation
To give predictable and reproducible results, all the spec-

ified virtual resources requested for an experiment need to
be allocated and reserved. Users can specify the necessary
resources for their VPXIs like CPU, memory, but also the
rate and latency of the interconnection links. In the Grid’5000
case, we manage virtual links over the RENATER backbone
and reserve access link capacities.

1) User services: In the Grid’5000 HIPerNET model, three
bandwidth reservation services are offered :
• Guaranteed minimum: The minimum rate that should

be available in the VPXI at any moment.
• Allowed maximum: The maximum capacity the VPXI

should allow at any moment.
• Static reservation: In this case, the guaranteed minimum

is equal to the allowed maximum.
These services can be used to different ends. For example,

a user who wants to execute a distributed application commu-
nicating with MPI will specify a guaranteed minimum rate.
Limiting the traffic of a VPXI to a maximum rate gives the
user the impression that he is using a physical network with
a maximum link speed. This link is shared in a best-effort
way with other traffic. Specifying a static rate gives the user
the impression to work in a dedicated physical network whose
links have the specified capacity. He will be able to obtain the
specified bandwidth at any moment but could never exceed it.
Among other things, this kind of service could help making
reproducible experiments where link availability should not
vary.

At each incoming VPXI-request (new resource specifica-
tion), HIPerNET determines if the VPXI can be mapped to
the physical underlay in a way to guarantee the required
minimum bandwidth on all the links, respecting also the
topology and other resource specifications. If this is not the
case, an alternative VPXI is proposed. When reservation starts,
rate control is activated or reconfigured to 1) guarantee the
desired minimum rate and/or 2) limit the rate to the desired
maximum for each VPXI.

To guarantee a minimum rate on a physical link, all the
concurrent virtual links using it are limited.

Let C be the capacity of the link, N the number of virtual
links sharing it, mreq(i) and Mreq(i) be respectively the
minimum and the maximum requested bandwidth of VPXI
i. Let Malloc(i) be the the allocated maximum bandwidth for
VPXI i on the considered link; the objective function is to
maximize

∑N
i=1 Malloc(i)

subject to
• mreq(i) ≤ C −

∑
j∈[1,N],j 6=i Malloc(j),∀i ∈ [1, N]

• mreq(i) ≤Malloc(i) ≤Mreq(i),∀i ∈ [1, N]
•

∑N
i=1 mreq(i) ≤ C

Given the user specifications for each VPXI i sharing
the link, mreq(i) and Mreq(i) (by default, mreq(i) = 0
and Mreq(i) = C), the optimum values for the maximum
bandwidth (Malloc(i)) per VPXI are calculated. The following
example will illustrate such an allocation scheme: Having a
10 Gb/s physical link on each site, 2 Gb/s are reserved for
the VPXIs, while the remaining bandwidth (8 Gb/s) are used
for best-effort traffic. Three VPXIs share the physical link
and the HPSRouter of each site has three VPXRouters. Let’s
assume each VPXI’s user specifies the same bandwidth for
all the VPXI’s virtual links. For the virtual links of VPXI
1 and 2, the users request respectively a minium (mreq) of
100Mb/s and 800Mb/s and a maximum (Mreq) of 500Mb/s

and 1500Mb/s. The user of VPXI 3 makes a static reservation
of mreq = Mreq = 300Mb/s for all the virtual links.
At timestamp t1, all of those three VPXIs are running. At
timestamp t2, VPXI 3 finishes its timeline and only VPXI
1 and 2 remain, so the rate allocations are recalculated. The
resulting allocation is illustrated in Table II. During the first

VPXI 1 VPXI 2 VPXI 3
t1 mreq 100 800 300
VPXI 1-3 Mreq 500 1500 300
allocated Malloc 500 1200 300
t2 mreq 100 800
VPXI 1-2 Mreq 500 1500
allocated Malloc 500 1500

Table II
RATE ALLOCATED PER VPXI (MB/S).

phase, from t1 to t2, all the virtual links can get the desired
minimum rate, but it is not possible to allocate the maximum
desired rate for each one. So the links of VPXI 2 can attempt
only a rate of 1200 Mb/s instead of 1500 Mb/s. At t2, VPXI 3
finishes, and the links of VPXI 1 and 2 can share the remaining
bandwidth. From this moment on, both VPXI 1 and 2 can
use their maximum desired bandwidth on the specified virtual
links.

2) Rate control techniques: A variety of technologies,
especially those provided by the Linux traffic control2

tool, can be applied to control the rate on the HPSRouters.
Different locations can be identified inside the HPSRouter
where rate control can take place. Considering the path of
a packet through the HPSRouter as represented on Figure 7,
there are four possible places on this path to implement traffic
control:

1) At the incoming on the physical interface of the HP-
SRouter(dom0);

2) At the outgoing on the virtual interface of dom0;
3) At the outgoing on the virtual interface of the

VPXRouter(domU);
4) At the outgoing on the physical interface of the HP-

SRouter(dom0).

Figure 7. Potential locations of rate-control mechanisms.

Limiting at the incoming physical interface (1) would consist
in dropping packets when the allocated bandwidth is exceeded.
This solution is unsatisfactory because shaping the traffic is

2http://lartc.org

preferable, in order to lose as few packets as possible. Limiting
at the outgoing virtual interfaces of dom0 seems to be a good
solution, as the traffic is shaped as soon as possible, before
even entering the virtual routers. Limiting at the outgoing
virtual interface of the virtual routers would be a solution too,
but shaping as soon as possible, i.e. before entering the virtual
router, would be preferable. The last shaping opportunity
occurs at the outgoing physical interface of dom0 (4), before
the packets leave the interface. The advantage, compared with
solutions 1, 2, and 3, is that the shaping function knows
the traffic of all the VPXIs, since it is concentrated on this
interface. This could help in adapting the treatment of one
VPXI’s traffic according to that of the other VPXIs. We thus
focus on limiting the traffic at the outgoing interfaces of dom0,
either the virtual ones or the physical ones. To shape the
traffic on the physical interface, a classful queueing discipline
is required in order to treat the traffic of each VPXI in a
different class. Limiting at the virtual interfaces would mean
that each virtual router has its own queueing discipline and so
no classful qdiscs are needed.

IV. EXPERIMENTAL RESULTS

This section presents experimental results about virtual
router performance and bandwidth control. All the experiments
are executed within the Grid’5000 [2] platform, using Xen
3.2 and IBM opteron servers with either one or two 1 Gb/s
physical interfaces. The machines have two CPUs with one
core each. Reference results are obtained using Linux with a
2.6.18 kernel.

A. Xen Virtual Router performance

As described before, virtualizing the data plane with Xen
introduces a longer path for the packets to go through, and
the physical resources have to be shared between several
virtual routers. In these experiments, the throughput, latency,
and scalability of VPXRouters are evaluated as well as the
resulting CPU overhead on Xen virtual routers. TCP and UDP
flows are sent over 1, 2, 4, or 8 virtual routers, sharing a single
physical machine with two physical network interfaces. All
the senders, routers and receivers are interconnected by one
switch; native-Linux throughput corresponds to the theoretical
values (941 Mb/s with TCP and 952 Mb/s with UDP) and
latency to around 0,017 ms. The measured TCP and UDP rates
with big packets (1500 bytes) are represented on Figure 8.
The measured UDP receive rate reaches the theoretical value
(952 Mb/s), whether using a single virtual router or eight
virtual routers at a time. The increasing rate with an increasing
number of virtual routers is due to little variations between
the start times of the flows. Packet loss is only related to
the sharing of the network interfaces, which is fair and using
the maximum capacity. With TCP, the results show that the
throughput is affected by the virtualization. It reaches only
about 85% of its theoretical throughput of 941 Mb/s for one
virtual router, and even less as the number of concurrent virtual
routers increases. Table III shows that this latency increases

Figure 8. Receiver-side throughput over 1, 2, 4, or 8 VPXRouters.

Latency(ms) linux 1 VR 2 VR 4 VR 8 VR
idle 0.084 0.147 0.150 0.147 0.154
stressed 0.888 1.376 3.8515

Table III
LATENCY OVER ONE VPXROUTER (VR) AMONG 1, 2, 4, AND 8, BEING

IDLE OR STRESSED WITH TCP FORWARDING.

significantly, as we increase the number of virtual routers for-
warding TCP flows. The TCP throughput could be increased
by giving more CPU scheduler weight to dom0 (result 3.2a),
which would also decrease the latency. The good performance
in UDP and the small overhead with TCP (the resulting
throughput reaches about 84% of the native Linux throughput)
show that the virtual-router approach is a promising idea for
the VPXRouter model, becoming scalable and efficient. Even
better performance can be expected considering the evolution
of virtualization techniques and hardware.

B. Rate control

The goal of this experiment is to evaluate the behaviour
of classical rate-control mechanisms in the context of vir-
tualization, on the routers hosting the VPXRouters. Three

Figure 9. Experimental setup with 3 VPXRouters controlling rates for 3
VPXIs.

VPXRouters, hosted by a single HPSRouter, control the rate
of three different VPXIs (Figure 9). The rates allocated
(Ralloc) on the VPXRouters of VPXI 1, 2, and 3 are re-
spectively 100 Mb/s, 150 Mb/s and 200 Mb/s. Three flows
(F1, F2 and F3), are sent over the three VPXRouters with
different input rates(Rinput) to vary the congestion factor
CF = Rinput/Ralloc. To generate, for example, a normal
load (CF=0.9), the input rates of the flows F1, F2 and F3 are

respectively 90 Mb/s, 135 Mb/s and 180 Mb/s.
In these experiments, three scenarios are considered to com-

Linux Virtualization
Ralloc Rate Loss Rate loss

F1 100 96.5 3.8% 96.4 3.9%
PSP F2 150 145 3.8% 145 3.9%

F3 200 193 4.7% 192 4.8%
TBF F1 100 98.7 1.6% 98.0 2.4%

CF=1 on F2 150 149 1.3% 147 2.4%
NIC F3 200 197 2.5% 196 3.2%
TBF F1 100 97.9 2.5%
on F2 150 147 2.4%
VIF F3 200 196 3.2%

F1 100 90.4 0.052% 90.3 0.15%
PSP F2 150 135 0.058% 135 0.16%

F3 200 181 0.057% 181 0.17%
TBF F1 100 90.4 0.013% 90.4 0.08%

CF=0.9 on F2 150 135 0.043% 135 0.1%
NIC F3 200 181 0.037% 181 0.12%
TBF F1 100 90.4 0.018%
on F2 150 135 0.02%
VIF F3 200 181 0.03%

Table IV
UDP RECEIVE RATE (MB/S) AND LOSS (%) WITH DIFFERENT

CONGESTION FACTORS (CF).

pare traffic shaping with PSPacer to traffic shaping with the
tocken bucket filter (TBF qdisc): 1) PSPacer is implemented
on the phsyical interfaces of the router; 2) a prio qdisc is
used on the physical interface (NIC) to hold a TBF in each
of its three classes; 3) a TBF is implemented on each virtual
interface(Figure 7.2).

Table IV shows the UDP rate Routput obtained by the flows
F1, F2 and F3 with a congestion factor CF of 1 (limit load)
and 0.9 (normal load). With CF = 1, small losses can be
observed in all the configurations, whereas the loss is slightly
higher with virtualization. Also PSPacer shows a little more
loss than TBF. With CF = 0.9 and no virtualization, the
loss is about 0 for all the configurations. It is slightly higher
with virtualization but still very close to 0 (<0.2%). The TBF
implemented on the virtual interfaces (Figure 7.2)) shows the
smallest loss (<0.04%). This good result is probably related
to the fact that the TBF is implemented on the entrance of
the virtual routers, limiting the rate as soon as possible.
Figures 10, 11 and 12 represent the TCP throughput over the
three virtual routers implementing the described rate control.
Table V shows the TCP throughput on a classical Linux router
without virtualization, forwarding three flows and applying
the same rate-control mechanisms. These are average values;
the rate variation is insignificant over the 60s measurement
interval. Compared to linux, virtualization has an impact

F1 (Mb/s) F2 (Mb/s) F3 (Mb/s)
PSP 86.6 130 174
TBF 86.6 130 174

Table V
TCP RATE ON LINUX WITH A CONGESTION FACTOR OF 0.9.

on the rate control mechanisms. Especially for PSPacer, the

Figure 10. TCP Rate over three virtual routers with PSPacer.

Figure 11. TCP Rate over three virtual routers with TBFs in a prio qdisc.

Figure 12. TCP Rate over three virtual routers with TBF on VIFs.

throughput is impacted by the virtualization for big rates. With
TBF, the throughput varies less and is bounded to the input
rate, but the results are still more predictable when TBF is
implemented on the virtual interfaces, controlling the flows
before entering the virtual routers. The overall performance is
decreased slightly with TCP on the virtual routers, as shown
by the previous experiment (IV-A), but is still promising,
achieving a rate close to the desired values.

V. RELATED WORK

The approach of controlled virtual network infrastructures,
running in parallel over a shared physical network is an emerg-
ing idea offering a variety of new features for the network.
VINI [6] is a virtual network infrastructure where researchers
can run experiments in virtual network slices running XORP
routing software inside UML instances they can configure and
chose between the available protocols. HIPerNET pushes this
facility a step further, adding data-plane virtualization and
allowing the user to chose the operating system and install any
routing software. This provides full isolation between virtual
nodes.
The CABO [7] design describes how to decouple services
from infrastructure using virtualization, to give Internet ser-
vice providers end-to-end control while using the physical
equipments of different physical infrastructure providers. The
HIPerNET implementation focuses more on the combination
of network with end-host virtualization to provide the users
with controlled virtual computing infrastructures.
In the GENI design [8], users are provided with slices com-
posed by either virtual resources or partitions of physical
resources. Its goal is rather to provide the user with multiple
shareable types of resources with high but limited reconfig-
urability being programmable and software can be uploaded.
The main difference between these projects and HIPerNET is
that HIPerNET provides the user with full reconfigurability,
just as in Grid’5000, where users can deploy any operating
system of their choice. This opposes Grid’5000 to other
platforms like PlanetLab [1], where pre-installed slices can
be reserved to execute user software.
DaVinci [9] uses virtual networks to isolate traffic classes and
run different traffic management protocols like in HIPerNET’s
VXRouters. Virtual networks are dynamically and periodically
adapted to optimize link utilization, while HIPerNET updates
the link allocations at each new or ending request, focusing
on the policing and control of the substrat sharing.
Virtual routers have improved their performance over the last
years [10]. However, Xen’s data-plane virtualization impacts
the performance [11]. But as HIPerNET focuses on full recon-
figurability, including OS choice, the data-plane virtualization
is of interest. Also, Xen’s performance have been growing
with successive versions [12]. Current hardware solutions do
not allow the same reconfiguration level than the VPXRouters.
For example Juniper’s TX Matrix Plus routers[13] allow to run
up to 16 routing instances, virtualizing the control-plane, what
offers above all more routing capacity for less power like in
server consolidation.

VI. CONCLUSION

Considering the convergence of the communication, compu-
tation and storage aspects of the Internet, this paper advocates
for the design, development and deployment of new resource-
management approaches to discover, reserve, co-allocate and
reconfigure resources, schedule and control their usages. This
paper developed the virtual private execution infrastructure
concept to offer advanced IT service providers a dynamic

access to extensible virtual private capacities, through on-
demand and in-advance bandwidth- and resource-reservation
services. This paper studied in particular an adaptation of the
virtual infrastructure concept and the HIPerNET software to
the Grid5000 facility. The goal is to provide users with fully
confined environment and enable reproducible experiments
which is not the case for other testbeds. We have prototyped
a software virtual router model which virtualizes both data
and control planes. Our results show that performances are
promising. Traffic is managed within each VPXI with classical
Linux traffic control mechanisms so that the users obtain fully
isolated channels where they can route freely their traffic.

ACKNOWLEDGEMENT

This work has been funded by the French ministry of
Education and Research and the ANR, INRIA, and CNRS,
via ACI GRID’s Grid’5000 project, ANR HIPCAL grant,
INRIA Aladdin ADT and the CARRIOCAS project (Pôle
SYSTEM@TIC IdF).

REFERENCES

[1] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Pe-
terson, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating system
support for planetary-scale network services,” in NSDI’04: Proceedings
of the 1st conference on Symposium on Networked Systems Design and
Implementation, (Berkeley, CA, USA), pp. 19–19, USENIX Association,
2004.

[2] F. Cappello, P. Primet et al., “Grid’5000: A large scale and highly
reconfigurable grid experimental testbed,” in GRID ’05: Proceedings of
the 6th IEEE/ACM International Workshop on Grid Computing, pp. 99–
106, IEEE Computer Society, 2005.

[3] G. P. Koslovski, P. Vicat-Blanc Primet, and A. S. Charão, “VXDL:
Virtual Resources and Interconnection Networks Description Language,”
in GridNets 2008, Oct. 2008.

[4] J. Laganier and P. Vicat-Blanc Primet, “Hipernet: a decentralized secu-
rity infrastructure for large scale grid environments,” in 6th IEEE/ACM
International Conference on Grid Computing (GRID 2005), November
13-14, 2005, Seattle, Washington, USA, Proceedings, pp. 140–147,
IEEE, 2005.

[5] D. M. Divakaran and P. Vicat-Blanc Primet, “Channel Provisioning in
Grid Overlay Networks (short paper),” in Workshop on IP QoS and
Traffic Control, Dec 2007.

[6] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini
veritas: realistic and controlled network experimentation,” in SIGCOMM
’06: Proceedings of the 2006 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 3–14,
ACM, 2006.

[7] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in
your spare time,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 1,
pp. 61–64, 2007.

[8] “GENI System Overview.” The GENI Project Office, September 2008.
[9] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,

“Davinci: Dynamically adaptive virtual networks for a customized
internet,” in CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT
conference, ACM, 2008.

[10] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in xen,” in ATEC ’06: Proceedings of the annual confer-
ence on USENIX ’06 Annual Technical Conference, pp. 2–2, USENIX
Association, 2006.

[11] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,”
in CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT conference,
ACM, 2008.

[12] F. Anhalt and P. Vicat-Blanc Primet, “Analysis and experimental evalu-
ation of data plane virtualization with Xen,” in ICNS 09 : International
Conference on Networking and Services, (Valencia, Spain), Apr. 2009.

[13] “http://www.juniper.net/products and services/t series core platforms/
index.html.”

	Motivations
	A new way of sharing and control
	Extending the virtualization concept
	Virtual Private Execution Infrastructures
	VPXRouters
	Embedding Virtual Infrastructures

	Adaptation to Grid'5000 experiments
	Virtual Router
	VPXRouter Architecture
	Virtual routing

	Rate allocation
	User services
	Rate control techniques

	Experimental results
	Xen Virtual Router performance
	Rate control

	Related work
	Conclusion
	References

