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Abstract Cloud computing infrastructures are
providing resources on demand for tackling the
needs of large-scale distributed applications. To
adapt to the diversity of cloud infrastructures
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and usage, new operation tools and models
are needed. Estimating the amount of resources
consumed by each application in particular is
a difficult problem, both for end users who
aim at minimizing their costs and infrastructure
providers who aim at controlling their resources
allocation. Furthermore, network provision is
generally not controlled on clouds. This paper de-
scribes a framework automating cloud resources
allocation, deployment and application execution
control. It is based on a cost estimation model tak-
ing into account both virtual network and nodes
managed by the cloud. The flexible provisioning
of network resources permits the optimization of
applications performance and infrastructure cost
reduction. Four resource allocation strategies re-
lying on the expertise that can be captured in
workflow-based applications are considered. Re-
sults of these strategies are confined virtual in-
frastructure descriptions that are interpreted by
the HIPerNet engine responsible for allocating,
reserving and configuring physical resources. The
evaluation of this framework was carried out on
the Aladdin/Grid’5000 testbed using a real appli-
cation from the area of medical image analysis.

Keywords Cloud computing · Resources
allocation · IaaS · Workflows · Network
virtualization · Description language
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1 Introduction

Cloud computing infrastructures are being in-
creasingly exploited for tackling the computation
needs of large-scale distributed applications. They
provide resources on demand to address the com-
putation needs of the applications. The virtual-
ization technologies exploited ease the migration
of heavyweight applications by adapting the ex-
ecution environment to the specific application
requirements. A challenging problem, both for
cloud providers and cloud users is the estimation
of the amount of resources to allocate out of the
cloud for a specific usage. In the commercial cloud
offers, various business models have been devel-
oped to bill resources usage. They are usually
based on a coarse-grained metering of the amount
of CPU and disk space consumed. Estimating the
proper amount of resources to allocate is left
to the responsibility of the user, although such
an estimation is far from trivial, especially when
considering distributed applications. From a user
point of view, assistance in resources consump-
tion planing and cost management is therefore
highly desirable. Furthermore, there exist non-
commercial platforms for which a finer estimate
of the resources allocation process is of interest
for the infrastructure providers. Finally, CPU and
disk space are not necessarily the only resources
that can be provisioned. For instance, network
bandwidth is also a critical resource for many
distributed applications. This paper addresses the
problem of estimating the “optimal” amount of
cloud resources (network links and nodes) needed
to run complex distributed applications according
to various strategies.

From an infrastructure provider point of view,
the major challenge is to account (financially or
not) for resources usage according to specific cri-
teria (e.g. fair share among users, degressive price,
etc). Commercial cloud infrastructures use a sim-
ple cost computation model (e.g. Amazon EC21

charges users per hours of resources usage, per
GB/month of storage and for the generated traffic
in networks) that lets the user responsible for

1http://aws.amazon.com/ec2/

precisely estimating the amount of resources to
reserve. This practice is less suitable for dedicated
infrastructures, such as academic clouds or intra-
enterprise clouds, for which providers are not
only interested in billing but also aim at improv-
ing quality of services and optimizing resources
sharing. Therefore, a finer grain model has to be
proposed to (i) decide on the amount of resources
to allocate to each application and (ii) compute
the resources usage cost.

From a user point of view, the problem of de-
termining the size of the infrastructure to deploy
for supporting a given application run is often a
difficult one. Although a quasi-unlimited amount
of computing resources may be allocated, a trade-
off has to be found between (i) the allocated
infrastructure cost, (ii) the performance expected
and (iii) the optimal performance achievable, that
depends on the level of parallelization of the
application. Without assistance, the user has to
resort to a qualitative appreciation of the optimal
infrastructure to allocate, based on her previous
experience with the application and the cloud
computing system used.

Theoretically, the cost of an infrastructure
deployment and usage scenario may be quan-
titatively estimated by the system if sufficient
information on the application and the infrastruc-
ture is known. In the general case though, it is
hardly feasible to anticipate the precise needs of
a parallel application or the behavior of such an
application given a determined size infrastruc-
ture. Restraining the problem a bit more, it
appears that workflow-based applications have
good properties for such a quantitative estima-
tion. Workflow-based applications represent a
large class of coarse-grained distributed applica-
tions [16]. Taking advantage of the workflow for-
malism, the application logic can be interpreted
and exploited to produce an execution schedule
estimate.

Determining the amount of computational and
storage resources needed for each application run
is often not sufficient when considering distrib-
uted applications. Communication network band-
width is also a critical resource, shared among the
infrastructure users, which may impact application
performance significantly. Nowadays, the virtual-

http://aws.amazon.com/ec2/
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ization paradigm can be applied and combined
to both network and computing resources and
the Infrastructure as a Service can be extended
to the network. This advanced cloud computing
paradigm enables the definition of confined exe-
cution environments, including the amount of vir-
tual resources needed, virtual network topology
and network links bandwidth. The global cloud
infrastructure manager is able to create multiple,
isolated and protected environments for multiple
users concurrently sharing the same set of physical
resources without interfering with each others.

The objective of this paper is to develop vir-
tual infrastructures design strategies for cloud
computing platforms which size and topology is
optimized according to some well-defined met-
ric. These strategies can be used for (i) users
to foresee the optimal infrastructure needed for
their application given a determined input data
set and (ii) infrastructure providers to allocate re-
sources. These strategies are implemented into a
framework which allows users to describe and au-
tomatically deploy their execution environment.
The paper is structured as follows. Section 2
defines the concept of customized virtual private
execution infrastructure which extends the In-
frastructure as a Service paradigm to the network.
Section 3 formulates the workflow-based cost es-
timation model used to design such execution
infrastructures according to four different strate-
gies. Section 4 describes the HIPerNet virtual in-
frastructure management middleware developed
and proposes an experimental validation of our
approach using a real distributed application in
the area of medical image analysis. Experiments
are carried out on the Aladdin/Grid’5000 research
infrastructure.

2 Network Extension of IaaS Paradigm

In the cloud computing context, the network is
generally not controlled and network resources
are charged according to the total volume of
data transferred. Nowadays, networking technol-
ogy such as network resource virtualization or
dynamic bandwidth control enables the flexible
provisioning of virtual network resources.

2.1 The VPXI Concept

We define the Virtual Private eXecution In-
frastructure (VPXI) concept as a time-limited
interconnection of virtual computing resources
through a virtual private overlay network. Any
user of a VPXI has the illusion that she is using
her own distributed system, while in reality she is
using shared cloud resources. The resulting virtual
instances are kept isolated from each others. The
members of a VPXI have a consistent view of
a single private TCP/IP overlay, independently
from the underlying physical topology. A VPXI
can span multiple networks belonging to disparate
administrative domains. Users can join from any
location, and deploy and use the same TCP/IP
applications they were using on the Internet or
their intranet.

A VPXI can be formally represented as a graph
in which a vertex is in charge of active data-
processing functions and an edge is in charge
of moving the data between vertices. A VPXI
specification comprises the recursive description
of: a) individual computing resources or resource
aggregates (clusters) involved, b) performance
attributes for each resource element (capacity),
c) security attributes, d) commercial attributes,
e) temporal attributes, f) elementary functions,
which can be attributed to a single resource or a
cluster (e.g. request of computing nodes, storage
nodes, visualization nodes, or routing nodes), g)
specific services to be provided by the resource
(software), h) the virtual-network’s topology, in-
cluding the performance characteristics (typically
bandwidth and latency), as well as the security,
commercial and temporal attributes of the virtual
channels.

Figure 1 illustrates this concept representing a
virtual infrastructure composed by the aggrega-
tion of virtual machines interconnected through
virtual links. It shows two virtual routers (ver-
tices rv A and rv B) which are used to intercon-
nect and perform the bandwidth control among
the other virtual resources (vertices rv 1 to 8).
The virtual routers can independently forward the
traffic of the different virtual infrastructures which
share the same physical network. Each edge rep-
resents a virtual link (as lv1 and lv2) with different
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Fig. 1 Example of a VPXI composition using graph
notation

configurations, used to interconnect a pair of vir-
tual resources.

2.2 Virtual Infrastructures Description

A VPXI is described through the Virtual eXecu-
tion Description Language (VXDL [24]). VXDL
is an XML-based language that allows the user
to describe not only the end resources, but also
the virtual network’s topology, including virtual
routers and timeline representation. The VXDL
grammar is divided into Virtual Resources, Virtual
Network Topology, and Virtual Timeline descrip-
tion as described below. Note that these descrip-
tions are partially optional: it is possible to specify
a simple communication infrastructure (a virtual
private overlay network) or a simple aggregate
of end resources without any network topology
description (a virtual cluster or Grid).

Virtual Resources Description This part of
VXDL grammar enables users and applications
to describe, in a simple and abstract way, all the
required end hosts and host groups. VXDL allows
the basic resource parametrization (e.g. minimum
and maximum acceptable values for RAM memo-
ry and CPU frequency). An important feature of
VXDL is that it proposes cross-layer parameters.
With the specification of anchor and the number
of virtual machines allocated per physical host
users can directly interact with lower layers and
transmit application-specific information. The

anchor parameters corresponds to a physical
allocation constraint of a VPXI. Indeed, in theory
a VPXI can be allocated anywhere in a virtualized
substrate, but sometimes it is desirable that a
virtual end host (or group) be positioned in a
given physical location (e.g. a site or a machine -
URL, IP) for an application-specific reason. On
the other hand, in a virtualized substrate, multiple
virtual machines can be allocated in the same
physical host, sharing the real resources. VXDL
enables the definition of a maximum number
of virtual machines that must be allocated in a
physical host, enabling users to interact directly
with the allocation algorithm.

Virtual Network Topology Description VXDL
brings two original aspects within the network’s
topology description: (i) the joined specification
of network elements and computing elements
and (ii) the link-organization concept, which per-
mits a simple and abstract description of com-
plex structures. Links can define connections be-
tween end hosts, between end hosts and groups,
inside groups, between groups and VXrouters,
and between VXrouters. In VXDL grammar, the
definition of source–destination pairs for each
link is proposed. The same link definition can
be applied to different pairs, simplifying the
specification of complex infrastructures. For ex-
ample, links used to interconnect all components
of an homogeneous group, as a cluster, can all
be defined in a same link description. Each link
can be defined by attributes such as latency, band-
width, and direction. Latency and bandwidth can
be defined by the maximum and minimum values.

Virtual Timeline Description Any VPXI can be
permanent, semi-permanent, or temporary. The
VPXI are allocated for a defined lifetime in
time slots. Time slots duration is specific to
the substrate-management framework and con-
sequently this parameter is configured by the
manager of the environment. Often the VPXI
components are not used simultaneously or all
along the VPXI lifetime. Thus, the specification
of an internal timeline for each VPXI can help
optimizing the allocation, scheduling, and provi-
sioning processes. Periods can be delimited by
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temporal marks. A period can be activated after
the end of another period.

3 Virtual Infrastructure Design Optimization
Problem

The virtual infrastructure design optimization
problem is to determine, given a specific ap-
plication run to carry out, both the amount of
resources and the network topology needed. Min-
imizing the amount of resources needed is not
necessarily the best objective function. Indeed, it
may be better to find a good trade-off between an
execution infrastructure cost and the application
performance. Such an objective can be formulated
as a cost function whose parameters depend on
the allocated infrastructure size. Both computing
resources and network bandwidth have to be con-
sidered in this cost function.

The general optimization problem is intractable
given that it depends on the exact distributed ap-
plication execution behavior. However, restrain-
ing the problem to workflow-based applications
makes it possible to exploit the knowledge on
the application captured by the formal workflow
description to address this problem. Many coarse-
grained distributed application can be modeled as
workflows of service invocation sequences. The
workflow directed graph features the application
services to be executed (workflow nodes) and
the dependencies between these services (edges).
As will be discussed later, only acyclic workflows
for which the execution schedule can be stat-
ically determined are considered in this paper.
An example application workflow, used later
on in the experimental validation, is shown in
Fig. 11. In this case, there are six services which
are interconnected by data dependencies. The
workflow describes the application computational
logic independently from the actual data sets to
be processed. Many workflow engines have been
proposed to scale the execution for a specific input
data set [37]. Each application service might be
invoked a variable number of times depending on
the data set size and, as long as no dependency
exists between two of these invocations, they can
be performed concurrently to exploit distributed
resources.

3.1 Cost Model for Workflow-based Applications

In our approach, an execution can occur in several
stages. For each stage, the VPXI can be reallo-
cated with respect to a specific configuration, to
perform the execution of part of the workflow.
After completing the execution, allocated re-
sources are returned to the cloud. The VPXI
reconfiguration between different stages, which
may involve redeployment of resources, is time-
consuming. One extreme condition, is to create a
static VPXI for the whole duration of the com-
plete workflow execution, thus sparing the rede-
ployment cost. Another extreme, is to allocate
new resources one by one on demand. The cost
model proposed below makes a fine-grained es-
timate of the resources that will be consumed
for each application run. Note that this model is
applicable to estimate the cost of a single run of an
application on the infrastructure. It does not take
into account other costs, such as the long term
storage of data onto the cloud storage service.
Should users need data storage before and/or after
execution, they would be charged additionally and
independently of the cost calculated below.

All parameters used in the cost model de-
scribed below are summarized in Table 1. Let
mmax be the maximum number of computing
nodes available on the infrastructure and s be

Table 1 Notations used in the cost function model

mmax Maximum number of computing
nodes available on the
infrastructure

n Number of input data items
s Number of execution stages

of the application
m = (m1, m2, ..., ms) Number of nodes used at each

execution stage with
∀i, mi ≤ mmax

cr Per-second cost of a computing
resource

cb Per-Mbps cost of bandwidth
Tdi Deployment time of stage i

(in seconds)
Ti(mi, n, b) Execution time of stage i

(in seconds)
b = (b1, b2, ..., bki), Links bandwidth used at stage

i ∈ [1..s] i (in Mbps)
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the number of execution stages of the application.
The vector m = (m1, m2, ..., ms) is the number of
nodes used at each execution stage with ∀i, mi ≤
mmax. Let cr be the per-second cost of a com-
puting resource. The total computing cost of the
infrastructure allocated for the application is:

Cr = cr ×
s∑

i=1

mi × (Tdi + Ti(mi, n, b)) (1)

where Tdi is the deployment time (including re-
source reservation and initialization time) and
Ti(mi, n, b) is the execution time at stage i. Ti

depends both on computing time and data transfer
time involved within stage i. It is parameterized
by the number of resources reserved (mi), the
number of input data items to process (n) and
the bandwidth (b = (b 1, b 2, ..., b ki), i ∈ [1..s]) of
the network links used for data transfer. The
computation of Ti is possible using the appli-
cation logic described through the workflow.
The workflow engine used in our experiment,
MOTEUR [16], was seminally designed to pro-
duce an execution schedule and control the dis-
tribution of an application at runtime. It was
enriched with a resource allocation and scheduling
planner that is used to estimate Ti, given that
information on the workflow services execution
time and transferred data amount is available.

The total infrastructure cost is also impacted
by the data transfer time. If the per-Mbps cost of
the reserved bandwidth is cb , then the total data
transfer cost is:

Cb = cb ×
s∑

i=1

(Tdi + Ti(mi, n, b))

ki∑

j=1

bj (2)

This cost applies to an infrastructure where the
amount of network bandwidth allocated is con-
trolled (e.g. HIPerNet [23]). It sums all data
transfer costs involved in the workflow execu-
tion, including workflow input data transferred
from outside the cloud (at stage 1), the temporary
data generated during workflow execution (at all
stages) and the output data transferred to external
resources (at stage s).

From formulas (1) and (2), the total infrastruc-
ture cost to execute the application can be
computed:

C = Cr + Cb (3)

This cost has to be optimized considering a
maximum admissible cost and the application per-
formance scalability. A trade-off has to be found
between the amount of computing resources and
network resources allocated (which impacts Ti),
and the resulting cost.

3.2 Comparison to a Commercial Offer

The cost model described in (1) and (2) can be
used for cost estimation both from an infrastruc-
ture provider and an infrastructure user point of
view. Depending on the intended usage, it may be
tuned. For instance, Amazon EC2 cloud comput-
ing offer charge users per hour, day or week of
usage. The times estimated are therefore rounded
at the ceil value in the unit considered. In addition,
Amazon EC2 does not account for infrastructure
deployment time in billing (Tdi = 0). This cloud
infrastructure also does not make it possible to
adapt nor guarantee the network bandwidth allo-
cated. The amount of network resources is there-
fore billed on the basis of the total amount of data
transferred rather than the amount of bandwidth
consumed. Finally, Amazon charges for workflow
input and output data transfers (data transfer
from and to the storage resources outside the
cloud) additionally, while in the model proposed
above this transfer is accounted for in Cb (2).

Consequently, the cost billed for the EC2 com-
puting resources usage is one of:

C′
r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c′
r × mmax ×

⎡

⎢⎢⎢⎢⎢⎢⎢

s∑

i=1

Ti(mi, n, b)

3600

⎤

⎥⎥⎥⎥⎥⎥⎥

(4a)

c′
r ×

s∑

i=1

mi ×
⌈

Ti(mi, n, b)

3600

⌉
(4b)

where c′
r is the Amazon EC2 per-hour unit cost of

computing resources. Case (4a) applies if a single
reservation is made for the whole duration of the
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workflow execution. In that case, there is a sin-
gle stage and the maximum number of resources
(mmax) will be reserved. Case (4b) applies if one
reservation is made for each stage. Compared
to (1), the cost computed in (4) is impacted by
rounding to the next hour. In particular in case
of multiple reservations (case 4b), the rounding at
each stage may be penalizing. A trade-off has to
be found between reserving the maximum number
of resources for the whole duration of the com-
putation (case 4a) and adapting the number of
resources at each stage, at the expense of an over-
estimated platform usage time (case 4b).

Similarly, the cost charged for usage of network
resources when transferring input/output data in
Amazon EC2 is:

C′
b = c′

b × VD (5)

where VD is the total amount of data transferred
between EC2 and other data sources (e.g. the
user machine or a database server on Amazon
S3), and c′

b is a per-volume unit cost. Unlike (2),
this cost cannot be adapted to specific network
usage requirements. This reflects the fact that this
infrastructure does not provide any bandwidth
control mechanism.

The total Amazon EC2 cost is:

C′ = C′
r + C′

b (6)

3.3 VPXI Design Strategies

The application execution time for each stage (Ti)
depends on the amount of resources allocated
within each VPXI. Four strategies are described
below to determine VPXIs and estimate the cor-
responding execution times.

3.3.1 Naive Strategy

Given p the number of services composing an
application workflow and ti the benchmarked exe-
cution time of service i ∈ 1..p, a set of mmax virtual
computing nodes is allocated and split proportion-
ally to each service execution time: mmaxti/

∑
j t j

nodes are dedicated to the service i. The network
bandwidth is similarly allocated proportionally to
the amount of data to transfer between each pair
of services, or the same bandwidth is reserved

for all links in the infrastructure. This strategy is
naive in the sense that it only considers a single
execution stage and the resources are statically
allocated to each service even though a service
may not be involved during the whole duration of
the workflow execution. This strategy serves as a
performance base-line.

3.3.2 FIFO Strategy

In this approach, we make the simplifying assump-
tion that all services can be deployed on every
computing resources. These resources are thus
indistinguishable and the scheduler may request
any task to be executed on any resource. A FIFO
scheduling strategy is optimal in this case and a
single stage is considered since infrastructure re-
deployment is unnecessary (T = T1). In addition,
the same bandwidth is reserved for all links in the
infrastructure (b 1 = b 2 = ... = b k). As an exam-
ple, Fig. 2 displays the estimated execution time
and the total cost of the workflow from Fig. 11
with regard to the bandwidth (for n = 32 input
data items and unit costs cr = cb = 0.2). When the
bandwidth is small, the total cost is high due to the
data transfer time. When the bandwidth increases,
the execution time and cost both decrease. How-
ever, after a 2.0 Mbps threshold, the execution
time only slightly reduces while the bandwidth
allocation cost increase dominates. The optimiza-
tion method used to numerically approximate the
optimal bandwidth leads to 0.6517 Mbps.
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3.3.3 Optimized Strategy

The FIFO strategy can only apply with identical
resources and without optimizing the bandwidths
between each pair of resources. Conversely, the
optimized strategy described below considers di-
viding the workflow execution in multiple stages
and allocating resources and bandwidth indepen-
dently for each stage. The cost minimization al-
gorithm is executed for each stage to allocate an
optimal number of virtual resources to the ser-
vices involved in this stage.

An algorithm is needed to decide on the num-
ber of stages and when infrastructure recon-
figuration should happen. Firstly, the workflow
of services is transformed into a Directed Acyclic
execution Graph (DAG), using the second com-
position approach presented in [39] for instance.
Secondly, the DAG is divided in execution
stages, each of them meant to be executed on a
specific virtual infrastructure. An example execu-
tion DAG for the workflow of Fig. 11 is shown in
Fig. 3, where IN and OUT are special entry and exit
nodes that are not accounted for in the execution
and data transfer times estimation. The pseudo-
code of the DAG split into stages is presented in
Algorithm 1. An execution stage is defined as the
set of invocations which have the same depth in
the DAG graph.

Note that the DAG generation is only possible
for workflows without unbounded loops (the ex-
act number of invocations of each service needs to
be known) so that the workflow planer can deter-

IN

...

OUT

Stage 1 

Stage 2 

Stage 3 

Stage 4 

CL1

CM1

PM1 YAS1 BAL1 

PR1

CL2

CM2

PM2 YAS2 BAL2

PR2

R2

I2

CLn

CMn

PMn YASn BALn

PRn

Rn

InI1

R1

Fig. 3 DAG jobs of Bronze Standard application for n
inputs

mine a complete execution schedule. Workflows
including while kind of loops, or foreach con-
structs iterating over unknown size data struc-
tures make the workflow unresolvable prior to
execution. This is limiting the class of applica-
tions that can be planed. Yet, this represents a
broad category of workflow applications in e-
Science (many data-intensive, scientific workflow
languages do not support loops [12]). A solution
for dealing with workflows with unresolvable con-
structs is to divide them into smaller resolvable
sub-workflows. This generation process has to be
revised dynamically though (e.g. each time a loop
is iterated, the loop body sub-workflow can be
generated). Such a strategy was implemented in
the workflow manager of the DIET middleware
(MA DAG) for instance, to deal with workflows
which could not be represented by DAGs.2

Algorithm 1 Execution DAG split into stages
Require: processedServices list initialized with all

workflow inputs.
Require: stage = 1

while There are still services to process do
stage-services = empty list
for each service S in workflow do

if all inputs of S come from the list of processed
services then

add S into stage-services
set stage of service S to stage

end if
end for
add list stage-services to list processedServices
increment the stage counter (stage = stage + 1)

end while

At each execution stage, the infrastructure is
reconfigured for only deploying the specific ser-
vices involved in that stage. The resources are
allocated proportionally to the number of invo-
cations needed for each service. In a typical data
intensive application execution, there are more
data items to process (n) than resources available
(mmax). For instance, in the case of a stage i with
only one service S (e.g. stage 1, 2 or 4 in Fig. 3),
mmax data items are processed concurrently by S

2DIET MA DAG: http://graal.ens-lyon.fr/∼diet/workflow.
html.

http://graal.ens-lyon.fr/~diet/workflow.html
http://graal.ens-lyon.fr/~diet/workflow.html


Joint Elastic Cloud and Virtual Network Framework for Application Cost/Performance 35

and the process is repeated n/mmax times, leading
to the execution time:

Ti =
⌈

n
mmax

⌉
× TS (7)

where TS is the execution time for S.
More generally, the optimal resources and

bandwidth allocation strategy, taking into account
the number of service invocations, the execution
time and the data transfer time in each stage
is computed using the multi-criterions Downhill
Simplex minimization method. Let invj, j = 1..s be
the number of invocations of service j at stage i
where s is the number of services being executed
at this stage. Let vector m = (m1, m2, ..., ms) be a
combination of number of resources allocated to
the service j. This combination must satisfy the
condition

∑s
j=1 mj ≤ mmax. The resulting optimal

execution time to complete invj invocations of
service j is:

Tj =
⌈

invj

m j

⌉
× Tuj (8)

where Tuj is the unit execution time of service j.

3.3.4 Services Grouping Optimization

The total execution cost also depends on the in-
frastructure deployment time of each stage. An
optimization of the total resources reservation and
redeployment time was designed, extending the
job grouping strategy without loss of parallelism
introduced in [15]. This strategy minimizes the
application makespan by grouping services which
would have been executed sequentially, thus re-
ducing data transfers and the number of job in-
vocations needed. Applying this strategy to the
workflow of Fig. 11, two services groups are iden-
tified which do not cause loss of parallelism as
shown in Fig. 4a. The number of execution stages
can also be reduced as shown in Fig. 4b.

This strategy only exploits workflow topology
information but not the actual execution cost of
the services, although it might be preferable to
loose some degree of parallelism, when the group-
ing gain is higher. The trade-off can be found
thanks to the execution planner developed for the
allocation strategies. Starting from the execution
DAG split into stages, job invocation groups are
evaluated for each consecutive pair of stages. For

CrestLines 
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PFMatchICP Yasmina Baladin 

PFRegister 

Database 

(a) Grouping without parallelism loss
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R1

OUT

…
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(b) Resulting execution DAG considering n input data
items

Fig. 4 Services grouping without parallelism loss
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Fig. 5 Grouping CrestMatch, PFMatchICP, Yasmina and
Baladin

each service A of the workflow involved in the
stage i, let B0, B1, ..., Bj be all children from A in
stage i + 1. All possible combinations of grouping
A with one or more of the Bk services is tested
and the resulting execution cost is evaluated by
optimizing the number of resources and the band-
width allocated. In the example used throughout
this paper, the best solution is shown in Fig. 5.

3.4 Virtual Resources Description Generation

For each VPXI design strategy, a VPXI is de-
scribed through VXDL. This VPXI is composed
of two parts: a generic part and variable one.
The generic part is used to describe mandatory
nodes to execute an application (e.g. middleware,
database). In our model, we use one node for this
part. It is used for the database server storing the
input data, intermediate and final results. Figure 6
presents the description of this part. The variable
part composing of computing resources is gener-

Fig. 6 Generic part description in VXDL language

ated according to the design strategies presented
in Section 3.3.

The naive strategy divides the set of mmax vir-
tual computing resources proportionally to the
execution time of workflow services. We use
the <vxdl:group> tag to describe a cluster of
virtual computing resources corresponding to a
workflow service. This cluster composes of mi =
mmaxti/

∑
j t j resources with a minimum amount

of RAM. Figure 7 presents the description of this
strategy.

Similarly to the naive strategy, the FIFO strat-
egy runs the application in a single stage and
assumes that all services can be deployed on every
computing resources. Therefore, the VXDL de-
scription has only one group.

The optimized strategy has a more complex
description which uses the Virtual Timeline De-
scription of VXDL language. Figure 8 presents an
example of the application which has two stages.
The first stage has one service which executes in ti
seconds. The second stage has three services start-
ing at the same time after first stage has finished.

The virtual network topology is specified by
depending on each application. The more depen-
dence between workflow services, the more com-
plicated network topology. Each link is specified
by a minimum amount of bandwidth and one or
more pairs of source/destination. Figure 9 shows
a typical link between the database storing the
workflow input and the computing resource clus-
ter of a workflow service.

Fig. 7 VXDL description of one cluster of computing
resources
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Fig. 8 Virtual timeline
description for the
optimized strategy

4 Validation on the Aladdin/Grid’5000 testbed

The cloud nodes and network allocation frame-
work described in this paper is implemented using
the HIPerNet middleware [3, 35], designed in the
context of the HIPCAL project.3 HIPerNet man-
ages a set of VPXIs as illustrated in Fig. 10 where
two virtual execution infrastructures (VPXI A
and VPXI B) are represented. Each application
can execute, confined in a VPXI dedicated for
a defined time period. Our workflow application
manager was instrumented with the HIPerNet
API to make it able to control the cloud resources
allocation.

4.1 HIPerNet Framework and the Aladdin/
Grid’5000 Substrate

HIPerNet provides a framework to build and
manage private, dynamic, predictable, and large-
scale virtual computing environments, that high-
end challenging applications can use with tradi-
tional APIs: standard POSIX calls, sockets, and
Message Passing (e.g. MPI and OpenMP) com-
munication libraries. With this framework, a user
preempts and, for a given timeframe, virtually

3http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/
ProjetsHIPCAL.html

interconnects a pool of virtual resources from a
distributed physical substrate, in order to execute
her application. VPXIs correspond to the HIPer-
Net’s management unit.

The HIPerNet framework aims at partitioning
a distributed physical infrastructure (computers,
disks, and networks) into dedicated virtual private
computing environments composed dynamically.
When a new machine joins the physical resource
set, HIPerNet prepares its operating system to
enable several virtual machines (VMs) to be in-
stantiated dynamically when required. This set of
potential virtual machines is called an HIPerSpace
and it is represented in the HIPerSpace database.
The HIPerSpace is the only entity that sees the
physical entities. A resource, volunteer to join
the resource pool, is automatically initiated and
registered in the HIPerSpace database. The dis-
covery of all the devices of the physical node is
also automatic. An image of the specific HIPerNet
operating system is deployed on it. In our cur-
rent HIPerNet implementation, the operating sys-
tem image basically contains the Xen Hypervisor
and its domain of administration called domain 0
(Dom 0). The HIPerSpace registrar (operational
HIPerVisor) collects and stores data persistently,
and manages accounts (e.g. the authentication
database). It is therefore hosted by a physical
machine outside of the HIPerSpace itself. For the

http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html
http://www.ens-lyon.fr/LIP/RESO/Projects/HIPCAL/ProjetsHIPCAL.html
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Fig. 9 Virtual network
topology description

sake of robustness and scalability, the HIPerSpace
registrar can be replicated or even distributed.

When a user submits a VPXI request specified
using the VXDL language, the HIPerNet al-
locator examines the request and executes an
embedding algorithm to map the virtual in-
frastructure on the physical one. Then if the
request is accepted, HIPerNet deploys or re-
configures the virtual resources of the VPXI
according to this specification. Using the band-
width control concept in Aladdin/Grid’5000 [34],
HIPerNet allocates link bandwidth to all the
virtual links whose bandwidth was explicitly
specified in VXDL during the request submission.
When a VPXI is created, virtual links are provi-
sioned according to the VXDL request. Within
this request, the user can specify several stages
for the VPXI, involving different configurations
of bandwidth to best fit the application’s require-
ments. While the VPXI is running, the user can
change its configuration moving from one stage to
another.

The experiments are carried out using sev-
eral virtual infrastructures managed by HIPerNet
within the Aladdin/Grid’5000 testbed.4 Aladdin/
Grid’5000 enables a user to request, reconfigure,
and access physical machines belonging to 9 sites
distributed in France. In our experiments, sev-
eral Aladdin/Grid’5000 nodes were reserved to
compose a pool of physical resources that we
initialize to form a HIPerSpace. To instantiate an
HIPerSpace, specific tools provided by the testbed
are used. This is the only part aware of the phys-

4https://www.grid5000.fr

ical infrastructure of the HIPerNet middleware.
All the other parts are independent of the phys-
ical resources because they use them indirectly
through the services provided by HIPerNet.

4.2 Test Application

The experiments are performed using the Bronze
Standard (BS) a real workflow-based application
from the area of medical image analysis [17]. The
BS technique tackles the difficult problem of val-
idating medical-image analysis tools. As there is
usually no reference, or gold standard, to validate
the result of a medical image analysis algorithm,
it is very difficult to objectively assess the results’
quality. The BS technique statistically quantifies
the maximal error resulting from widely used im-
age registration algorithms. The larger the sample
image database and the number of registration
algorithms to compare with, the most accurate the
method. This procedure is very scalable and de-
scribed through a complex application workflow
illustrated in Fig. 11. In the experiments reported
below, a clinical database with 59 pairs of patient
images was used. For each run, 354 computing
tasks were generated.

4.3 Experiments

For testing the allocation strategies, a system im-
age containing the OS (based on a Debian Etch
Linux distribution with a kernel version 2.6.18-8),
the domain-specific image processing services was
created. The infrastructures allocated are man-
aged by the HIPerNet framework which enables

https://www.grid5000.fr
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Fig. 10 Example of a
VPXI allocation on a
distributed and
virtualized HIPerSpace

the joint virtualization of computing and network
resources. The physical resources were reserved
on the fully reconfigurable Aladdin/Grid’5000 re-
search infrastructure, cluster sagittaire in Lyon,
France. The physical resources are Sun Fire V20z
machines, 2.4 GHz, 2 cores and 2GB RAM inter-
connected through 1Gbps Ethernet. The exper-
imental infrastructure is diagrammed in Fig. 12.
For all experiments, 36 physical computers were
reserved. The MOTEUR workflow engine, as a
client of the HIPerNet cloud manager engine, was
hosted on one physical host, outside of the cloud.
The 35 remaining computers were registered in
the HIPerSpace. The HIPerNet engine deploys
and manages virtual machines on these computer
on demand (dark arrows), either with on OS im-

CrestLines 

Floating Reference CL_size 

CrestMatch 
PFMOpt

PFMatchICP

Yasmina 

YasminaOpt 

Baladin

BaladinOpt 

PFRegister

Results

Fig. 11 Bronze standard workflow

age of the input database server or the application
services. In our experiments, each physical com-
puter hosts a single virtual machine. MOTEUR
produces VXDL descriptions that are requested
to the HIPerNet engine (blue connection). Af-
ter receiving all virtual machines allocated to
the VPXI, MOTEUR connects to the computing
nodes to invoke the application services (red con-
nections). The computing nodes connect to the
database host to copy the input data and send
the computational results, and the final results are
sent to MOTEUR (green connections).

For the needs of the MOTEUR planner, all six
services involved in the BS workflow have been
benchmarked for execution time and amount of
data transferred as reported in Table 2. For each
experiment, the application was executed 5 times
and the makespan was averaged to minimize the
execution time variations encountered in distrib-
uted computing. The standard deviation is also
reported.

Virtual Machine 2 
Computing Node

Virtual Machine 1 
Database

HIPerNet engine

Virtual Machine k
Computing Node

Virtual Machine 35 
Computing Node

Fig. 12 Experimental infrastructure
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Table 2 Benchmark of
the BS services execution
time and data transfer
volumes

Services Time (average ± standard deviation) Input data Produced data

CrestLines 31.06 s ± 0.57 15 MB 10 MB
CrestMatch 3.22 s ± 0.51 25 MB 4 MB
PFMatchICP 10.14 s ± 2.41 10.2 MB 240 kB
PFRegister 0.64 s ± 0.22 240 kB 160 kB
Yasmina 52.94 s ± 12.96 15.2 MB 4 MB
Baladin 226.18 s ± 19.36 15.2 MB 4 MB

For each strategy, the planner optimizer was
executed to determine the configuration with
the minimal execution cost. The number of vir-
tual machines allocated to the application and
the bandwidth between the database node and
computing nodes are specified by corresponding
VXDL documents.

4.3.1 Single Stage Strategies

The naive and FIFO strategies are single-stage.
They use maximum available computing re-
sources (34 computing machines) with an opti-
mal bandwidth yielding to a minimal execution
cost. The virtual infrastructures of the naive and
FIFO strategies are represented in Figs. 13 and 14,
respectively. Conversely, the optimized strategies
are multi-stages, optimize bandwidth needed, and
may allocate less resources than the maximum
available when there is no gain in doing so.

Fig. 13 Virtual infrastructure composition considering the
naive strategy

We also measured the deployment time of
the virtual infrastructure before running the
application and the reconfiguration time be-
tween stages of the optimized strategies. The re-
configuration time takes into account bandwidth
reconfiguration between the database host and
computing nodes allocated to application services
in each stage. The virtual machines in stage n are
reused in stage n + 1. If the stage n + 1 use more
virtual machines than stage n, additional virtual
machines are deployed during the execution of
stage n.

The naive allocation strategy allocated the 34
computing nodes to application services as fol-
lows: 3 nodes for CrestLines, 1 node for Crest-
Match, 1 node for PFMatchICP, 1 node for
PFRegister, 5 nodes for Yasmina, and 23 nodes
for Baladin. The same bandwidth, 2.69 Mbps, is
used for all computing nodes. The application
makespan is 67.08min ± 0.10min. This experi-
ment shows that the virtual resources are not
well exploited during the execution. Figure 15
shows a schedule of this strategy. Each colored
line represent one task duration: it starts once

Fig. 14 Virtual infrastructure composition considering the
FIFO strategy
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Fig. 15 Tasks schedule with the naive strategy

the corresponding task has been submitted and
stops at the end of its execution. The first, brighter
part of the line represents the task waiting time
spent from submission until a resource becomes
available for execution. Colors are arbitrary and
just help to distinguish the different tasks. As can
be seen, at the beginning of the execution, only
three nodes are used to execute the CrestLines
service. Other resources are wasted. Similarly, the
result of CrestMatch is needed for three services:
PFMatchICP, Yasmina and Baladin but there is
only one resource allocated to this service accord-
ing to this strategy and it becomes a bottleneck.

The makespan of the FIFO strategy is lower:
46.88 min ± 0.78 min with the optimal bandwidth
(1.16 Mbps). The standard deviation of this strat-
egy is higher due to the variable arriving order of
the tasks. Some long tasks can be executed on the
same computing resource, leading to the increase
of the application makespan. Figure 16 shows a
typical task schedule for this strategy.

4.3.2 Multi-Stages Strategies

For the optimized strategies, the planer deter-
mines the number of virtual resources and the
bandwidths yielding to a minimal execution cost.
Without services grouping there are 4 execution
stages which are represented in Fig. 17. According
to the optimization results: only 30 nodes were
allocated for the first, second and fourth stages
(additional resources would be wasted). The
bandwidths are 4.62, 14.74 and 3.87 Mbps, respec-

Fig. 16 Tasks schedule with the FIFO strategy

tively. For the third stage, 4 nodes were allocated
to PFMatchICP, 6 nodes for Yasmina and 20
nodes for Baladin. The bandwidth for each service
in this stage is 0.87, 1.36 and 1.29 Mbps, respec-
tively. The corresponding application makespan is
37.05 ± 0.25 min.

Further grouping the application services as
shown in Fig. 5, the application is divided into
three stages only, using 30 nodes each. As pre-
sented in Fig. 18, the bandwidth allocated for
each stage is 4.90, 1.95 and 3.87 Mbps, respec-
tively. The application makespan is then 22.93 ±
0.35 min. Besides the execution time improve-
ment, the number of resources consumed is also
lowered. As we can observe in Fig. 19, all tasks
of the same stage do not finish exactly at the
same time though, due to some variations of the
image analysis tools execution time depending on
the exact processed image content. This has an
impact as the tasks of stage n have to wait for the
longest task of stage n − 1 before the system can
be reconfigured.

4.3.3 Summary

In conclusion, Table 3 compares the performance
of the strategies presented above and the associ-
ated platform cost computed using (3). The worst
case is the naive strategy that uses the maximum
number of resources for a very large makespan
and a long deployment. The FIFO strategy spends
the same time to deploy the infrastructure but it
has a better makespan than the naive strategy. The
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Fig. 17 Virtual
infrastructure
composition considering
the optimized strategy
without grouping services

naive and FIFO strategies reconfiguration time
is null since they are single-stage. The optimized
strategy without grouping services has better re-
sults both in terms of application makespan and
number of resources consumed than the naive and
FIFO strategies, although it has to spend time
to reconfigure the infrastructure after each stage.
The best case is obtained for the optimized strat-
egy with services grouping. It uses less resources,
spends less time to reconfigure the infrastructure
and returns the results faster. In terms of the

deployment time, the naive and FIFO strategies
take 29.83 min to deploy 35 virtual machines. It
is to be noted that HIPerNet does not enable the
parallel deployment of resources yet. This dura-
tion corresponds to the time needed to copy the
OS images (319MB) from the HIPerNet engine to
the virtual machines and start them sequentially.
The optimized strategies use only 31 machines,
reducing the deployment time to 25.68 min. In the
future, parallel deployment is expected to lower
this redeployment overhead. As expected, the cost

Fig. 18 Virtual
infrastructure
composition considering
the optimized strategy
with grouping services



Joint Elastic Cloud and Virtual Network Framework for Application Cost/Performance 43

Fig. 19 Tasks schedule with the optimized services
grouping

estimated is lowered for higher performing strate-
gies to the reduction of the application makespan
and of the network bandwidth consumed.

4.3.4 Comparison with a Commercial Of fer

Table 4 presents the cost billed by Amazon EC2
(6) as a function of the unit costs (currently in Eu-
rope, c′

r =$0.10/VM/h, and c′
b =$0.15/d/GB). For

these computations we made the hypothesis of
the same running times on Amazon EC2 nodes as
on the Aladdin/Grid’5000 platform. While Ama-
zon EC2 data transfer cost is the same for all
strategies (transfer of 1GB input and output data),
the cost payed for computing resources varies.
The naive strategy, executing in more than one
hour, dominates the reservation cost for comput-
ing resources (2 hours × 35VMs × c′

r). The reser-
vation duration reduces to one hour for other
strategies. Since the FIFO strategy uses 35VMs,

its cost is higher than the optimized strategy with
and without grouping optimization which use less
resources (31VMs). Compared to Amazon EC2
cost, the cost model introduced in this paper is not
rounded to the next hour, thus showing a decrease
of the execution cost following the application
makespan decrease. Moreover, the exact amount
of bandwidth allocated is taken into account, thus
showing a decrease on the data transfer cost for
higher performing strategies. This cost is closer to
a real measurement of the amount of resources
consumed on the platform.

4.3.5 Impact of Bandwidth Control
on Application Cost

Further experiments to evaluate the bandwidth
control mechanism were also performed. The
application was executed using the optimized
strategy with service grouping under two addi-
tional network bandwidth configurations: lower
and higher bandwidth values than the optimal
found were tested (1 and 10 Mbps respectively).
Table 5 displays for each configuration: the data
transfer time in each stage (in seconds), the ap-
plication makespan (in minutes) and the corre-
sponding cost. Comparing the results with the
optimized bandwidth allocation, it appears that
using a low bandwidth, the makespan increases
as expected. However, the cost increases as well
because the cost gain on network bandwidth is
compensated by the loss on computing nodes
reservation time. With the high bandwidth, the
application makespan can be reduced (−22.72%
in this case) at a higher cost (+102% computed
with cr = cb = 0.10).

Table 3 Performance comparison between the four strategies

Strategy Makespan #VM Deployment Reconfiguration Execution cost
time time (×105)

Naive 67.08 min ± 0.10 35 29.83 min 0 1.40 × cr + 3.68 × cb

FIFO 46.88 min ± 0.78 35 29.83 min 0 0.98 × cr + 1.10 × cb

Optimized
(without grouping) 37.05 min ± 0.25 31 25.68 min 79.29 s 0.69 × cr + 0.98 × cb

Optimized
(with grouping) 22.93 min ± 0.58 31 25.68 min 52.86 s 0.42 × cr + 0.48 × cb
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Table 4 Comparison with Amazon EC2

Strategy Makespan #VM Execution cost

HIPerNet (×105) Amazon EC2

Naive 67.08 min ± 0.10 35 1.40 × cr + 3.68 × cb 2 h × 35 VMs × c′
r + 1 GB × c′

b
FIFO 46.88 min ± 0.78 35 0.98 × cr + 1.10 × cb 1 h × 35 VMs × c′

r + 1 GB × c′
b

Optimized
(without grouping) 37.05 min ± 0.25 31 0.69 × cr + 0.98 × cb 1 h × 31 VMs × c′

r + 1 GB × c′
b

Optimized
(with grouping) 22.93 min ± 0.58 31 0.42 × cr + 0.48 × cb 1 h × 31 VMs × c′

r + 1 GB × c′
b

5 Related work

This work is related to workflow scheduling,
resources management and mapping workflows
onto resources. Many existing resource alloca-
tion and task scheduling strategies for Grid
applications (e.g. [8]) focus on matchmaking algo-
rithms which goal is not to determine an optimal
allocation but is limited to identify suitable re-
sources. Workflow-based allocation algorithms [6,
7, 18, 26] can deliver better performances than
matchmaking algorithms. However, the objective
of these algorithms is to minimize the application
makespan and they do not take into account the
execution cost on a pay-per-use platform.

The best-effort algorithms such as Min–Min,
Max–Min [25] or HEFT [32] focus only on min-
imizing the application makespan while other
QoS constraints algorithms such as Deadline/Time
Distribution [38] and LOSS/GAIN [29] consider
a multi-objective scheduling problem. However,
all of them do not take into account the link
bandwidth for data exchange between workflow
services.

In [28], Ramakrishnan et al. presented a fault
tolerance workflow scheduling algorithm to or-
chestrate multiple workflows on Grid and Cloud
infrastructures by duplicating the execution of
some workflows to increase the probability of
success of individual tasks. This kind of approach,
although potentially efficient in reducing execu-

tion time, does not consider the infrastructure
cost. Other workflow scheduling algorithms un-
der resource allocation constraints have been also
proposed [30, 36]. In [30], Senkul et al. presented
an architecture for workflow scheduling that con-
siders resource allocation cost and control con-
straints (e.g. co-allocation of tasks on a same
resource). It does not take into account resource
limitations and heterogeneity. Furthermore, our
approach differs as it considers the trade-off be-
tween allocation cost and performance.

Silva et al. presented in [31] a heuristic for re-
sources allocation on utility computing infrastruc-
ture. This heuristic optimizes the number of
machines allocated to process tasks and speed
up the execution within a limitation of budget.
However, this heuristic is only suitable for bag-of-
tasks problems in which there is no dependence
and the communication between tasks.

Within the Service Level Agreements (SLA)
context, Dang et al. presented in [10, 11] the
resource allocation algorithms to map Grid-based
workflows onto Grid resources. These algorithms
try to assign the workflow tasks to Grid resources
so as to meet the user’s deadline and minimize the
cost. These algorithms do not take into account
the network bandwidth.

Concerning the virtual resources and network
description language, new challenges coming from
virtualization techniques have to be considered
to complement the specification proposed by

Table 5 Bandwidth control mechanism evaluation

Bandwidth Stage 1 Stage 2 Stage 3 Makespan Execution cost
(s) (s) (s) (min) (×105)

Low (1 Mbps) 222.59 ± 2.51 316.57 ± 40.37 2.91 ± 0.50 34.78 ± 0.67 0.65 × cr + 0.31 × cb

Optimized 53.8 ± 4.56 171.72 ± 24.66 1.53 ± 0.23 22.93 ± 0.58 0.42 × cr + 0.48 × cb

High (10 Mbps) 30.79 ± 3.85 42.68 ± 9.55 1.09 ± 0.18 17.72 ± 0.23 0.33 × cr + 1.61 × cb
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classical infrastructures [13, 21, 33]. Some works
have proposed specific languages to describe,
model, and exchange information on network
topologies [2, 5, 22]. But in addition, it is needed
to combine the spatial and temporal aspects of
virtual infrastructures. For example, the Open
Virtualization Format (OVF) [9] proposes a
mechanism to package and distribute software to
be run in one or more virtual machines. Already,
the Open Cloud Computing Interface Working
Group (OCCI-WG) [1] is investigating a solution
to interface with Cloud Infrastructures exposed
as services. The cloud infrastructures resources
(compute, network and storage) are described us-
ing a simple key-value-based descriptor format.

These languages are very efficient for their pro-
posal, but none of them meet all the specification
requirements in terms of flexibility, expres-
siveness, reliability, and simplicity, required to
achieve an optimal VPXI specification and allo-
cation [23].

The use of virtual Grids to simplify application
scheduling has been explored in [20]. They pro-
pose a descriptive language, vgDL, which enables
users to specify an initial description of the desir-
able resources, resulting in a pre-selected virtual
Grid corresponding to a simple vgDL description.
vgDL proposes three aggregation types to specify
the interconnection network: LooseBag, TightBag
and Cluster. The approach proposed in VXDL is
more comprehensive and allows the definition of
the infrastructure’s shape through the description
and configuration of virtual links.

The approach of controlled virtual network in-
frastructures, running in parallel over a shared
physical network is an emerging idea offering a
variety of new features for the network. Cabo [14]
proposes to exploit virtual networks for Internet
Service Providers, distinguishing them from the
physical infrastructure providers, and giving them
end-to-end control. HIPerNet shares the same
vision but focuses more on distributed computing
application and proposes a language to express
the infrastructure requirements in capacity, time,
and space.

In [4], the authors propose VINI, a virtual
network infrastructure that allows several virtual
networks to share a single physical infrastruc-
ture, in a similar way to HIPerNet. VINI makes

the network transparent to the user, representing
each component of the network. This being one
of our main interests, HIPerNet provides a lan-
guage, VXDL, to specify the topology of those
components. The GENI project [27] aims to build
a shared infrastructure for hosting multiple types
of network experiments. VXDL can help in the
description of slices and HIPerNet is an orchestra-
tion framework that suits GENI’s requirements.

Similarly to the network elasticity of HIPerNet,
DaVinci [19] is a concept proposing also virtual
networks adapting to performance objectives. In
DaVinci, the network is monitored and the dif-
ferent virtual networks adapt dynamically to the
conditions in order to optimize their performance.
While this approach is an interesting way to im-
prove virtual network quality, our approach con-
siders virtual network user’s as well as substrate
provider’s interests, coming with a cost model. A
user reserves virtual network capacity to a certain
cost and has in return performance guarantees for
the reserved period of time.

6 Conclusion

This paper proposed strategies to determine
a cost/performance trade-off when executing
workflow-based distributed applications on a
cloud infrastructure. The advanced network band-
width control capabilities of the HIPerNet mid-
dleware are exploited to extend the traditional
cloud paradigm to network provisioning. An ex-
perimental validation was carried out using a real
workflow-based medical application. Results as-
sess the performance of the optimized strategy
with job grouping optimization. They show the
critical impact of network performance on the
application. The solution implemented can be
exploited by end-users to minimize their costs
or service provider to design resources sharing
strategies.

Acknowledgements This work is funded by the French
National Agency for Research (ANR), program “Calcul
Intensif et Simulation”, HIPCAL project (http://hipcal.
lri.fr), under contract number ANR-06-CIS-005. Experi-
ments presented in this paper were carried out using the
Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support

http://hipcal.lri.fr
http://hipcal.lri.fr


46 T. Truong Huu et al.

from CNRS, RENATER and several Universities as well
as other funding bodies (https://www.grid5000.fr).

References

1. Open Cloud Computing Interface Working Group
(OCCI-WG). http://www.occi-wg.org/doku.php (2009)

2. Addie, R., Braithwaite, S., Zareer, A.: Netml: a lan-
guage and website for collaborative work on networks
and their algorithms. In: ATNAC 06 (2006)

3. Anhalt, F., Koslovski, G., Vicat-Blanc Primet, P.: Spec-
ifying and provisioning virtual infrastructures with
HIPerNet. In: ACM International Journal of Network
Management (IJNM)—Special Issue on Network Vir-
tualization and its Management, vol. 20(3), pp. 129–148
(2010)

4. Bavier, A., Feamster, N., Huang, M., Peterson, L.,
Rexford, J.: In VINI veritas: realistic and controlled
network experimentation. ACM SIGCOMM Comput.
Commun. Rev. 36(4), 3–14 (2006)

5. Begnum, K., Sechrest, J.: The MLN Manual—Version
1.0. http://mln.sourceforge.net/doc/mln-manual.pdf
(2009)

6. Bittencourt, L.F., Madeira, E.R.M.: Towards the
scheduling of multiple workflows on computational
grids. J. Grid Comput. 8(3), 419–441 (2010)

7. Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K.,
Mandal, A., Kennedy, K.: Task scheduling strategies
for workflow-based applications in Grids. In: Interna-
tional Symposium on Cluster Computing and the Grid
(CCGrid’05), pp. 759–767 (2005)

8. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Ma-
heswaran, M., Reuther, A.I., Robertson, J.P., Theys,
M.D., Yao, B., Hensgen, D., Freund, R.F.: A com-
parison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed
computing systems. J. Parallel Distrib. Comput. 61(6),
810–837 (2001)

9. Crosby, S., Doyle, R., Gering, M., Gionfriddo, M.,
Grarup, S., Hand, S., Hapner, M., Hiltgen, D.,
Johanssen, M., Lamers, L.J., Leung, J., Machida,
F., Maier, A., Mellor, E., Parchem, J., Pardikar,
S., Schmidt, S.J., Schmidt, R.W., Warfield, A.,
Weitzel, M.D., Wilson, J.: Open Virtualization Format
Specification (OVF). Technical Report DSP0243, Dis-
tributed Management Task Force, Inc. (2009)

10. Dang, M.Q., Altmann, J.: Resource allocation algo-
rithm for light communication Grid-based workflows
within an SLA context. Int. J. Parallel Emergent Dis-
trib. Syst. 24(1), 31–48 (2009)

11. Dang, M.Q., Hsu, D.F.: Mapping Heavy Communi-
cation Grid-Based Workflows Onto Grid Resources
Within an SLA Context Using Metaheuristics. Int.
J. High Perform. Comput. Appl. 22(3), 330–346
(2008)

12. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta,
G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,
Cavanaugh, R., Koranda, S.: Mapping abstract com-

plex workflows onto Grid environments. J. Grid Com-
put. 1(1), 9–23 (2003)

13. Dijkstra, F., Swany, M.: Network Mark-up Language
Working Group (NML-WG). https://forge.gridforum.
org/projects/nml-wg (2007)

14. Feamster, N., Gao, L., Rexford, J.: How to lease the
internet in your spare time. SIGCOMM Comput. Com-
mun. Rev. 37(1), 61–64 (2007)

15. Glatard, T., Montagnat, J., Emsellem, D., Lingrand,
D.: A service-oriented architecture enabling dynamic
services grouping for optimizing distributed workflows
execution. Future Gener. Comput. Syst. 24(7), 720–730
(2008)

16. Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.:
Flexible and efficient workflow deployement of data-
intensive applications on grids with MOTEUR. Int. J.
High Perform. Comput. Appl. 22(3), 347–360 (2008)

17. Glatard, T., Pennec, X., Montagnat, J.: Performance
evaluation of grid-enabled registration algorithms us-
ing bronze-standards. In: Medical Image Comput-
ing and Computer-Assisted Intervention (MICCAI’06)
(2006)

18. Guo, W., Sun, W., Hu, W., Jin, Y.: Resource alloca-
tion strategies for data-intensive workflow-based ap-
plications in optical Grids. In: 10th IEEE Singapore
International Conference on Communication Systems
(IEEE ICCS 2006), pp. 1–5 (2006)

19. He, J., Zhang-Shen, R., Li, Y., Lee, C.-Y., Rexford,
J., Chiang, M.: Davinci: dynamically adaptive virtual
networks for a customized internet. In: CoNEXT ’08:
Proceedings of the 2008 ACM CoNEXT Conference,
pp. 1–12. ACM, New York (2008)

20. Huang, R., Casanova, H., Chien, A.A.: Using virtual
Grids to simplify application scheduling. In: 20th IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS 2006) (2006)

21. Distributed Management Task Force Inc. Common
Information Model (CIM) Standards. http://www.
dmtf.org/standards/cim/ (1999)

22. Jiang, X., Xu, D.: vbet: a vm-based emulation testbed.
In: MoMeTools ’03: Proceedings of the ACM SIG-
COMM Workshop on Models, Methods and Tools for
Reproducible Network Research, pp. 95–104. ACM,
New York (2003)

23. Koslovski, G., Truong Huu, T., Montagnat, J., Primet,
P.V.-B.: Executing distributed applications on virtu-
alized infrastructures specified with the VXDL lan-
guage and managed by the HIPerNET framework. In:
First International Conference on Cloud Computing
(CLOUDCOMP 2009), Munich, Germany (2009)

24. Koslovski, G., Primet, P.V.-B., Charão, A.S.: VXDL:
virtual resources and interconnection networks de-
scription language. In: GridNets 2008 (2008)

25. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Fre-
und, R.F.: Dynamic matching and scheduling of a class
of independent tasks onto heterogeneous computing
systems. In: Eighth Heterogeneous Computing Work-
shop (HCW’99), pp. 30–44. IEEE Computer Society,
San Juan, Puerto Rico (1999)

26. Mandal, A., Kennedy, K., Koelbel, C., Marin, G.,
Mellor-Crummey, J., Liu, B., Johnsson, L.: Scheduling

https://www.grid5000.fr
http://www.occi-wg.org/doku.php
http://mln.sourceforge.net/doc/mln-manual.pdf
https://forge.gridforum.org/projects/nml-wg
https://forge.gridforum.org/projects/nml-wg
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/


Joint Elastic Cloud and Virtual Network Framework for Application Cost/Performance 47

strategies for mapping application workflows onto the
Grid. In: 14th IEEE International Symposium on High
Performance Distributed Computing (HPDC’05), pp.
125–134. IEEE Computer Society, Washington, DC,
USA (2005)

27. Peterson, L., Anderson, T., Blumenthal, D., Casey,
D., Clark, D., Estrin, D., Evans, J., Raychaudhuri,
D., Reiter, M., Rexford, J., Shenker, S., Wroclawski,
J.: GENI design principles. Computer 39(9), 102–105
(2006)

28. Ramakrishnan, L., Nurmi, D., Mandal, A., Koelbel, C.,
Gannon, D., Huang, T.M., Kee, Y.-S., Obertelli, G.,
Thyagaraja, K., Wolski, R., YarKhan, A., Zagorodnov,
D.: VGrADS: enabling e-science workflows on grids
and clouds with fault tolerance. In: International Con-
ference for High Performance Computing, Network-
ing, Storage and Analysis (SC09) (2009)

29. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos,
M.D.: Scheduling workflows with budget constraints.
In: CoreGRID Integration Workshop (CGIW2005),
pp. 347–357. Springer-Verlag, Pisa, Italy (2005)

30. Senkul, P., Toroslu, I.H.: An architecture for workflow
scheduling under resource allocation constraints. Inf.
Syst. 30(5), 399–422 (2005)

31. Silva, J.N., Veiga, L., Ferreira, P.: Heuristic for re-
sources allocation on utility computing infrastruc-
tures. In: 6th International Workshop on Middleware
for Grid Computing (MGC 2008), pp. 1–6. ACM
(2008)

32. Topcuoglu, H., Hariri, S., Min-You, W.: Performance-
effective and low-complexity task scheduling for

heterogeneous computing. Int. J. Supercomput. Appl
13(3), 260–274 (2002)

33. van der Ham, J., Grosso, P., van der Pol, R., Toonk, A.,
de Laat, C.: Using the network description language in
optical networks. In: Proc. IFIP/IEEE IM (2007)

34. Primet, P.V.-B., Anhalt, F., Koslovski, G.: Exploring
the virtual infrastructure service concept in Grid’5000.
In: 20th ITC Specialist Seminar on Network Virtualiza-
tion, Hoi An, Vietnam (2009)

35. Primet, P.V.-B., Roca, V., Montagnat, J., Gelas, J.-P.,
Mornard, O., Giraud, L., Koslovski, G., Truong Huu,
T.: A scalable security model for enabling dynamic vir-
tual private execution infrastructures on the internet.
In: IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID 2009), Shanghai, China
(2009)

36. Xiao, Z., Chang, H., Yi, Y. (2007) Optimization of
Workflow Resources Allocation with Cost Constraint,
pp. 647–656. Springer, Berlin/Heidelberg

37. Yu, J., Buyya, R.: A taxonomy of workflow manage-
ment systems for Grid computing. J. Grid Comput.
3(3–4), 171 – 200 (2005)

38. Yu, J., Buyya, R., Tham, C.K.: Cost-based schedul-
ing of scientific workflow application on utility Grids.
In: First International Conference on e-Science and
Grid Computing (E-SCIENCE’05), pp. 140–147. IEEE
Computer Society, Melbourne, Australia (2005)

39. Zhao, H., Sakellariou, R.: Scheduling multiple DAGs
onto heterogeneous systems. In: 15th Heterogeneous
Computing Workshop (HCW 2006), Rhodes Island,
Greece (2006)


	Joint Elastic Cloud and Virtual Network Framework for Application Performance-cost Optimization
	Abstract
	Introduction
	Network Extension of IaaS Paradigm
	The VPXI Concept
	Virtual Infrastructures Description

	Virtual Infrastructure Design Optimization Problem
	Cost Model for Workflow-based Applications
	Comparison to a Commercial Offer
	VPXI Design Strategies
	Naive Strategy
	FIFO Strategy
	Optimized Strategy
	Services Grouping Optimization

	Virtual Resources Description Generation

	Validation on the Aladdin/Grid'5000 testbed
	HIPerNet Framework and the Aladdin/Grid'5000 Substrate
	Test Application
	Experiments
	Single Stage Strategies
	Multi-Stages Strategies
	Summary
	Comparison with a Commercial Offer
	Impact of Bandwidth Control on Application Cost


	Related work
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


