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Abstract—The elastic provisioning of Virtual Infrastructures
(VIs) enables a dynamic management of cloud resources (com-
puting and communication) in order to meet the hosted ap-
plication’s requirements. Thus, to perform elasticity requests,
providers usually rely on reallocation mechanisms and policies.
The concerns regarding the environment and the operational
costs indicate energy consumption of the data centers as recurring
topic in providers policies. Moreover, energy-aware provisioning
is beneficial for tenants also. Recent cost models have introduced
an implicit incentive to use computing and networking resources
just when need to avoid high rent costs. However, reallocation
and elasticity requests can unbalance the Data Center (DC)
unnecessarily increasing the number of active servers. In this
paper we propose EAVIRA algorithm, which takes into account
the proportional sharing of CPU usage of DC servers to calculate
individual usage costs to: disable idle equipments, and reallocate
VIs. EAVIRA acts on online requests for elasticity configuration
and performs an offline load balancing, triggered by the Infras-
tructure as a Service (IaaS) provider. Our experimental analysis
indicates a reduction of energy consumption and an increasing
on acceptance ratio of allocation requests.

I. INTRODUCTION

The economical and administrative benefits bring out by
IaaS clouds to tenants led to the wide dissemination of VIs.
With the IaaS model, providers offer idle DC capacity as ser-
vices, amortizing the operational costs and generating revenue
with a reduced marginal cost. Each tenant composes a private
and isolated VI in accordance with the hosted application’s
requirements specifying network and compute parameters.
Moreover, IaaS tenants rent VIs for various purposes without
concern for maintenance in physical resources [1]. A key
enabler for cloud adoption is the elastic provisioning of virtual
resources. The variation in the processing load of hosted
applications requires mechanisms to expand, reduce and re-
organize, in number and configuration, the virtual resources
previously allocated [2]. Instead of provisioning resources for
the worst case scenario, the elastic management guarantees the
configuration required to accommodate the dynamic workload
reducing rent costs.

Among the administrative tasks performed by a cloud
provider, we highlight the allocation and reallocation of phys-
ical resources for hosting VIs. The former algorithm analyses
the residual DC capacity to find suitable servers for hosting the
VI, while the latter adapts the elastic virtual resources atop the
DC. A request to create or reconfigure a VI is characterized
as an online submission, as the tenant seeks an immediate
response. On the other hand, a reallocation considering all

previously allocated VIs can be triggered by a provider for
load balancing purposes [3]. For performing a reallocation of
VIs, the DC is usually reorganized (i.e., virtual resources are
migrated) to accommodate the demands respecting the Service
Level Agreement (SLA). Both problems belong to NP-hard
class challenging cloud providers [4].

Allocation and reallocation are guided by policies repre-
senting the IaaS provider goals. Currently, the concern about
energy consumption of servers is a growing tendency as it
directly implies administrative costs as well as environmental
damage. For instance, studies accounted that in 2011 DCs were
responsible for 3% of US energy consumption, with further
growth predicted [5]. This figure is mainly associated to the
cooling of servers representing 53% of the total number [6].

The unpredictably of arrival and the non-deterministic con-
figuration of elastic requests are critical factors for energy
reduction. In short, the definition of an energy-aware reallo-
cation policy comprising the management of elastic requests
is a challenging problem. A simple request can unbalance
the entire DC, creating communication bottlenecks, or un-
necessarily increasing the number of active servers. With
regard to tenants, the commonly applied approaches to server
consolidation often violate the SLA [7] [5].

We claim that providers can provide elastic VIs and simulta-
neously reduce the energy consumption of their DCs. In order
to enforce this assertion, a recent study indicated that CPU
energy consumption can be used to perform a fair share of the
server provisioning costs among providers and tenants [8]. The
individual processing cost (virtual CPUs and network traffic)
of Virtual Machines (VMs) is combined with a proportional
fraction of management costs (e.g., hypervisor management
operations) to compose a final cost. Indeed, energy-aware
provisioning is beneficial to providers and tenants, decreasing
management and rent financial investments.

The algorithm we propose in this work deals with elastic
VI reallocation and considers the proportional sharing of
host CPUs to calculate individual consumption, disable idle
servers, and reorganize virtual resources atop the DC. Besides
performing the traditional server consolidation, our algorithm
(termed EAVIRA) innovates having as premise a proportional
cost sharing model. In short, the increase in energy cost
from the provider perspective is directly related not only
to the number of active servers, but also to the processing
load of VMs. In addition to meet the SLA requirements,
the algorithm accounts the fair fraction of energy-based cost



to each tenant for performing the DC load balancing. Our
experimental results shows a reduction on energy consumption
and an increase on acceptance ratio of new requests. In
short, we propose two contributions: (i) EAVIRA receives
and processes online elastic requests for virtual resources
reconfiguration, complementing a lack on existing allocation
mechanisms, that usually ignore the adaptation of previously
allocated resources [9] [10]; and (ii) EAVIRA performs a
DC reorganization in order to reduce energy consumption
guided by a proportional cost sharing. The paper is organized
as follows: Section II motivates the problem and reviews
related work. Section III presents EAVIRA. The experimental
analysis is discussed on Section IV, and Section V states our
considerations and future work.

II. MOTIVATION AND LITERATURE REVIEW

A. Elastic Virtual Infrastructure Provisioning

An IaaS cloud provider periodically receives requests from
tenants to allocate or reconfigure VIs. The former requires the
initial configuration of virtual resources while the latter details
the updates necessary to accommodate the current workload of
hosted applications. An elastic operation is started by tenants
to update the configuration of VMs (e.g., memory, vCPU)
and/or number of resources composing a VI.

Figure 1 exemplifies both, the arrival of allocation and
reallocation requests (virtual capacity requests are given as
weights on graphs). At discrete time intervals, a provider
receives one or more allocation and reconfiguration requests
that must be immediately analyzed. Initially, VI 1 and VI 2
are mapped atop the DC by an allocation mechanism. The
SLA for VI 1 specifies that migration is not allowed for
one of its VM (in black). Latter, replication, resizing (up
and down) and release operations are requested for VI 1
and VI 2. Complementary, the DC administrator periodically
runs a reallocation mechanism to rebalance the DC load
(consolidation step).
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Fig. 1. Online allocation of VIs is performed by a third-part algorithm
whereas the reallocation (i.e., replicating, resizing, and releasing VI) and DC
consolidation are performed by EAVIRA.

VIs can be hosted on DCs formed of thousands servers inter-
connected by a structured network topology. A single update
executed on a virtual resource or the instantiation of a few
VMs may unbalance the DC increasing energy consumption
and operational costs. In this context, mechanisms for elastic
provisioning are a key enabler for a DC efficient management.

1) Mechanisms for Elastic Provisioning: Both tenants and
providers enjoy the benefits of elasticity. On tenants perspec-
tive, such technique is used to react on changes at hosted
application workload and performance, while for providers
the elasticity it is applied to consolidate VMs on servers,
increasing the acceptance ratio of new requests (Section IV).

An elastic operation can be categorized in four types [11]:
(i) release, representing the deactivation of a virtual resource
and deallocation of computing, storage and networking capac-
ities; (ii) resizing, in which virtual capacities are increased or
decreased; (iii) replication, representing the activation of a new
virtual resource based on an exiting one, commonly used in
application load balancing [2]; and (iv) migration, in which all
the content of a VM is transferred to a new host. Migration
is mainly applicable in administrative tasks to reorganize the
DC. Eventually, requests for resizing and replication can be
converted to migration requests. This scenario is observed
when the residual capacity of a host is not enough to attend
the request. Finally, the resizing of a virtual resource is the
less time costly technique [12].

2) Elastic Provisioning Requests: When requesting a VI,
tenants establish an SLA with the IaaS provider. By defin-
ing the Service Level Indicators (SLIs), the SLA specifies
characteristics that must be guaranteed by the provider, such
as reliability, performance, security, geographical location,
among others [13]. Complementary, the Service Level Ob-
jective (SLO) is used to measure and control the service
performance according to the SLA, accounting metrics such
as bandwidth, availability, and response time [11]. If execution
peaks occur and are identified, then the SLO may be temporary
violated. In this case, in order to keep the hosted service
quality, elastic requests are triggered. In the present work, in
addition to the traditional requirements for VM configuration
(vCPU, memory, storage and bandwidth), the SLA comprises
the definition of the maximum time allowed for the migration
task. The option was included since it is known that VM
migration time induces an overhead in the hosted application
performance [14].

The tenant can request elastic adjustment based on proactive
or reactive monitoring and control mechanisms [15] [16].
However, the algorithm we proposed in Section III is agnostic
to metrics and monitoring tools.

B. Related Work

The specialized literature related with the present work com-
prises allocation and reallocation techniques, mechanisms for
elastic provisioning, and policies guided by energy efficiency.

1) VI Allocation and Reallocation: As online allocation
algorithms must provide answers on suitable execution time,
they are usually based on heuristics to reduce the search space.
Regardless of the Quality of Service (QoS) requirements
allowed on SLA and the IaaS provider goals, an exhaustive
search considering all resources on a DC is inadequate. Fol-
lowing this line, Oliveira et al. proposed an algorithm based on
trees to speed up the allocation [17], termed VITreeM. The al-
gorithm converts both, a DC graph and a VI request into trees.



Latter, the trees are compared to find a suitable match. An
approach based on linear programming was introduced in D-
ViNE and R-ViNE [18]. Both proposals sought the allocation
with focus on ensuring the shortest route to host a virtual path.
By reviewing the literature, we highlight that the algorithm
proposed in the present paper (Section III) is agnostic to the
VI allocation mechanism. That is, among the many existing
solutions [9] [10] [3], the provider can select the appropriate
mechanism based on its private objectives. VITreeM [17] and
Modified Best Fit Decreasing (MBFD) [3] were selected to
compose the experimental scenario (Section IV) but a future
work can explore different solutions.

With regard to the reallocation of VIs, an algorithm for
DC load balancing was proposed in [19] prioritizing requests
with high revenue. In turn, Duan et al. developed an algorithm
based on load prediction to distribute the VMs atop a DC [5].
An ant colony optimization was applied to reduce the energy
cost following the traditional DC consolidation approaches.
Beloglazov et al. developed an energy-aware heuristic for
consolidation based on VM migration [3]. The proposal,
termed Minimization of Migrations (MM), is used as baseline
for our comparisons (Section IV).

The present work includes tenants expectations on prob-
lem formulation: although the main objective is to reduce
the energy consumption (a provider decision), the algorithm
processes elastic requests respecting SLA requirements. In
addition to traditional SLA definitions, a tenant can define the
maximum acceptable time for migrating a VM (Section III-C),
limiting the consolidation level achieved by a provider.

2) Mechanisms for Elastic Provisioning: Having as main
motivation the reduction of VM provisioning costs, Sharma
et al. proposed an elasticity method based on linear program-
ming [12]. When an elasticity request is received, the provider
selects the VM instance flavor with the lowest provisioning
cost. Latter, the mechanism applies migrations to consolidate
the DC, as well as VM replications for load balancing. Darolt
et al. adopted reactive elasticity approach to optimize multi-
tiered applications and decrease the provisioning cost [16]. The
present proposal is independent of internal application moni-
toring and controlling mechanisms. The definition of thresh-
olds and specification of SLA are considered as tenant actions.
Some existing models and techniques may help tenants on
defining the allocation and reallocation requests [15] [20].

The virtual resource elastic provisioning focused on high
performance computing was proposed in [2]. The mechanism
provisions VMs whenever the application performance is
lower than expected, innovating by anticipating the realization
of elastic requests, reducing the waiting time. EAVIRA can
be combined with this approach to decrease the energy con-
sumption, even when executing CPU-intensive applications.

3) Energy Efficiency on IaaS Providers: Some factors re-
lated to the impact of elastic provisioning on cloud computing
were investigated by Assunção et al. [21]. The simulations
elucidated that traditional approaches to deactivate servers
should be replaced by early reservation strategies, following
the considerations of [2]. Based on this assertion, Section IV

addresses the application of the proposed mechanism in
scenarios based on different requirements for elasticity and
migration. With regard to the calculation of the provisioning
cost, a common practice for public providers is to dilute both
the capital and operational costs on predefined pricing sheets.
A recent work motivated the calculation performing a propor-
tional sharing of energy consumption costs [8]. Thus, tenants
are charged according to their actual CPU consumption, while
providers are responsible for the adjacent costs. The energy-
aware cost model (Section III-C1) was incorporated into the
algorithm described in Section III.

Finally, it is important to emphasize that the differential
of our proposal is the combined reconfiguration of virtual
resources and energy-aware load balancing, guided by a pro-
portional share of energy costs, as far as our knowledge a
contribution not identified on the related work.

III. EAVIRA

The proposed mechanism, termed Energy-Aware Virtual In-
frastructure Reallocation Algorithm (EAVIRA), aims to attend
requests for VI reconfiguration simultaneously decreasing the
DC energy consumption. However, this promising goal must
be met respecting the SLA, which in this context defines
the maximum acceptable time for the migration of a virtual
resource. EAVIRA consists in three main steps: (i) definition
of a baseline infrastructure; (ii) processing elasticity requests;
and (iii) VIs reallocation atop a DC. The steps are discussed
in the following sections.

A. Definition of a Baseline Infrastructure

The starting point of EAVIRA is the definition of a Baseline
Infrastructure (BI). Since reallocation is an NP-hard problem,
this infrastructure is obtained to represent only a fraction
of the DC decreasing the number of servers analyzed at a
given execution. In short, this pruning speedups the reallo-
cation process as the number of servers and interconnecting
paths is reduced. Thus, only the resources participant of
a BI are candidates to eventually receive the migration of
virtual resources. A BI is formally defined as the slice of
a physical infrastructure (servers and links) that hosts the
costly VI. The VI cost is given as follows: considering that a
VI is composed of VMs and switches (R) interconnected by
virtual links (E), the provisioning cost (C(V I)) is defined as
C(V I) =

∑
i∈R c(i)+

∑
l∈E c(l)×len(p), where c(.) denotes

the virtual capacity provisioned for a resource [19]. A virtual
link l is hosted by a DC physical path p. Summing up, the cost
of a VI is given by the sum of the capacities provisioned for
each virtual resource. The hypothesis for this approach is that
the costly VI corresponds to the one with the greatest difficult
for reallocation (and migration). For recognizing changes that
have occurred in the DC, the BI definition is realized at each
execution of EAVIRA.

B. Processing Elasticity Requests

After defining the BI, EAVIRA processes requests for
virtual resources release, resizing, replication, and migration.



The realization follows an ascending order of execution cost
(e.g., resource consuming and processing time) [22]. Initially,
by releasing a VI, the providers have more choices of recon-
figuration and consolidation. Among the three elasticity mech-
anisms, resizing has the lowest computational cost, followed
by replication and migration [12].

1) Releasing Virtual Infrastructures: This operation con-
sists of releasing the capacity of servers and links previously
reserved to host the VIs. The trigger of this operation is the end
of a reservation, or when spontaneously invoked by a tenant.

2) Resizing Virtual Resources: EAVIRA considers the scal-
ing up and down of VM configuration (e.g., CPU, RAM) as an
on-the-fly resizing operation. However, when the residual ca-
pacity of the hosting server is not enough to provision the new
configuration, a migration must be performed (Section III-C).
The goal behind the migration is to move the VM to a new
server with enough residual capacity to satisfy the request (and
probably a new one).

3) Virtual Machine Replication: The replication is com-
monly applied for load balancing of multitiered applications.
This task consists on a dispatcher which is on charge to
distribute the requests to a set of VMs. When all VMs
are compromised processing and answering users requests,
a new replica can be deployed to release the application
load [11] [2] [16]. In short, the replication of a VM may
consist on copying a disk image for a new server and latter
activating the new VM. Afterwards, the operating system and
all hosted applications are started, and the appliance enters on
resource pool. The replication time (t(i)) of a VM i is given
by t(i) = α+ D(i)

b +β, where D(i) is the image size, b is the
available bandwidth to move a new VM to the new host, and
constants α and β represents the activation time of hibernating
servers and the starting time on target host [12], respectively.

EAVIRA chooses to replicate the VM on the same host
since the system image is already available locally to minimize
t(i). When the server does not have enough residual capacity
to host a new VM, the mechanism selects a host from BI to
receive the new replica. If the BI has no candidates apt to
host the replica, another server from the DC is selected and
incorporated to the BI. The chosen candidate must leave the
smallest gaps in residual capacity (best-fit approach) to induce
server consolidation [23].

C. Migrating Virtual Infrastructures

After executing the release, resize, and replication requests,
the successive migrations of VMs are started. This step is
essential for consolidating the DC.

1) Energy-Aware Cost Model: As depicted by Fig. 2,
the energy consumption of a virtualized server can be
proportionally shared among hosted VMs [8].

In short, the total cost is composed of: (i) minimum energy
consumption representing the hypervisor energy consumption
without any active VMs; (ii) management energy consumption
referent to hypervisor processing to schedule, allocate and
multiplex resources; (iii) networking energy consumption of

total CPU energy consumption of a virtualized server
hypervisor consumption - proportionally shared

(i) minimum (ii) VM management (iii) network

tenant - individual
vm 1, vm 2, …, vm n 

(iv) vCPUs load

Fig. 2. Proportional sharing of energy consumption [8].

hypervisor processing to handle VM data transfers; and (iv)
VM energy consumption originated by application workload.

Both itens (iii) and (iv) depends on VM workload. However,
itens (i) and (ii) are proportionally shared between tenants and
provider. In this sense, the VM consolidation atop a single
server is beneficial for a provider as all fractions are diluted
between hosted tenants. However, scheduling a VM migration
to meet a request for elasticity represents a critical point due
to the potential activation of a new server.

2) Predicting VM Migration Time: Implementing VM live
migration [24] is a challenging task for cloud providers,
moreover, the prediction of total VM migration time based
on hosted application workload is a trick responsibility. The
prediction must consider VM memory usage, network band-
width, and restart overhead (pre- and pos-actions) [14], as
summarized by Algorithm 1.

Algorithm 1: Predicting VM migration time [14].
input : mth, vth, pth, vmem, b, d, l
output: VM migration time

1 let v0 = vmem, vmig = 0, tmig = 0, tdown = 0;
2 for i = 0; i < mth do
3 ti = vi/b;
4 vi+1 = ti ∗ d ∗ l;
5 tmig = tmig + ti;
6 vmig = vmig + vi;
7 if vmig > vth ∨

vi+1
l > pth then

8 break;
9 tdown = vi+1/b;

10 tmig = α+ tmig + tdown;
11 return tmig ;

The algorithm is executed in rounds and only transfers the
memory content assuming that storage is synchronized (using
network file systems or replication tools). At each round, the
amount of memory pages changed since the previous round
is transferred to destination host (lines 3 to 6). A set of
parameters and variables are used to predict the migration
time. Initially, representing the system configuration, vmem
denotes the total VM memory, l the page size, and b the
available bandwidth to transfer VM migration data. The max-
imum number of iterations that can be performed is given by
mth. For given the algorithm parameterization, two thresholds
are defined: vth indicates the maximum amount of memory
that can be transferred per round, and pth represents the
maximum number of dirty pages (changed pages) per iteration.
At each round, d is updated with the number of pages that
must be transferred (a constant, for prediction), and both the
migration volume (vmig) and time (tmig) are accounted. When
a threshold is extrapolated, the algorithm performs a stop-and-
copy phase (time is accounted in line 9). It is worthwhile to
mention that a destination server may be deactivated before



receiving the VM migration. In this sense, α (line 10) is used
to represent the activation time when the server is not running.
As EAVIRA uses VMs consolidation to disable idle servers,
VMs with SLA migration restriction (the allowed migration
time is zero) prevent the shutdown of servers that host them,
even when they are the unique VMs provisioned on the server.

D. EAVIRA Algorithm and Examples

In order to exemplify EAVIRA execution, Fig. 3 depicts
the steps to attend VI elasticity requests and DC consolidation
(based on Fig. 2).
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Fig. 3. Execution of EAVIRA to attend VI elasticity requests and DC
consolidation from Fig. 1.

A partial graph representing the DC servers hosting the
baseline infrastructure (Section III-A) is presented. Each node
has a residual capacity representing the amount of available
resources to allocate new demands. VMs from VI 1 and VI
2 are mapped to DC graph. Initially, the allocations of VI 1
and VI 2 are performed by a third-part mechanism beyond
the scope of the present work (a possible solution is presented
on Fig. 3(a)). Afterwards, EAVIRA executes the replication,
resizing, and consolidation steps as:

1) Processing Elastic VM Requests: The elasticity requests
are on-the-fly demands that must be promptly processed. For
instance, at time t3 from Fig. 1 a replication is required for
VI 1. The VM replica is allocated following a best-fit of
residual capacity (grey square) as depicted by Fig. 3(b). Latter,
at t3 (Fig. 1), three operations for resizing VMs from VI 2
are requested: decrease capacity from 4 to 3, and increase
two VMs from 4 to 6. The resulting scenario after resizing
the VMs is shown in Fig. 3(c). Two requests are promptly
performed, however, the resizing of a VM to increase capacity
from 4 to 6 requires the migration of a VM (represented by
the dashed line). The VM with lowest impact (in terms of
migration time – Section III-C2) is selected to be migrated
for accommodating the resizing request. We want to highlight
that EAVIRA performs all requests aiming VM consolidation

(following a best-fit allocation based on residual capacity) in
accordance with the cost model discussed in Section III-C1.

2) Reallocating Virtual Infrastructures: A DC stakeholder
can periodically invokes EAVIRA to perform a DC consoli-
dation through VI migration. This scenario is exemplified at
t4 on Fig. 1. EAVIRA migrates VMs to consolidate servers
and decreases the energy cost fraction attributed to a provider.
Moreover, the VMs consolidation respect the SLA: when
allowed, a migration must be performed in accordance to
the maximum specified time. For instance, for achieving the
consolidation scenario depicted by Fig. 3(d), EAVIRA kept
the anchor VM from VI 1 on its original host. However, other
VMs were moved around releasing two DC servers (in grey).
Latter, both servers are deactivated.

The Algorithm 2 represents the mechanism in the pseu-
docode form.

Algorithm 2: EAVIRA reallocation algorithm for energy-
aware DC consolidation.

input : BI
output: Energy consumption

1 resources = get_resources(BI);
2 nodes = {∀neighb;neighb ∈ adj(node) ∧ node ∈ resources};
3 visited = {};
4 for ∀node;node ∈ nodes do
5 nodes = nodes− {node};
6 visited = visited ∪ {node};
7 resources = get_resources(BI);
8 nodes = nodes ∪ {∀neighb;neighb ∈ adj(node) ∧ neighb /∈

resources ∧ neighb /∈ nodes ∧ neighb /∈ visited};
9 rollback_list = {};

10 for ∀vnode ∈ get_virtual_resources(node) do
11 resources = get_resources(BI, vnode.type);
12 if ¬migrate(vnode, resources) then
13 failed = True;
14 break;
15 else
16 rollback_list = rollback_list ∪ {vnode};
17 if failed then
18 rollback(rollback_list);
19 rollback_list = {};
20 return get_dc_energy_consumption();

Initially, all servers hosting the baseline infrastructure are
identified (line 1). Thus, because all servers from a BI
represent possible migration anchors, EAVIRA aims their
consolidation. In this sense, all neighbors of BI are candidates
to be deactivated (line 2) after migrating their hosted VMs. For
each neighbor (line 4), EAVIRA marks it as visited (line 6)
and tries to migrate all hosted VMs to the BI servers (lines 10
to 15). When a migration is not possible (SLA infringement),
EAVIRA discards the target host as candidate (line 16) and
all process is rollbacked. It is worthwhile to highlight that
the consolidation algorithm is based on VM migration time
prediction for performing the analysis, without moving VMs
around. If a better scenario is found based on DC consumption,
then the migration plan is deployed and VMs are migrated.

At the end of EAVIRA consolidation algorithm, the active
resources fraction on a DC will be less energy consuming than
or equal to the previous scenario. Indeed, in the worst case
the DC load will not change, and in the best case, the number
of active servers will be reduced guided by the proportional



sharing of energy costs. If there are consolidations, then the
same amount of virtual resources will remain allocated.

In short, for performing a VM migration, EAVIRA requires:
(i) the maximum migration time constraint defined in SLA is
respected; (ii) there is a destination host with enough available
resources; and (iii) all VMs connected to the migrated resource
have their links reconnected to the destination host. Otherwise,
the migration is not performed.

IV. SIMULATIONS AND ANALYSIS

EAVIRA is agnostic to online allocation mechanism applied
to find an initial solution. It focus resides on performing
elasticity updates and DC consolidation based on proportional
sharing of energy costs. Based on the literature review, the
VITreeM [17] and MBFD [3] algorithms were selected for
composing the simulation scenario. With regard to realloca-
tion mechanisms, EAVIRA can be compared to MM mech-
anism [3]. In summary, the simulation scenario comprehends
the execution of VITreeM and MBFD for allocation; EAVIRA
and MM for reallocation. Considering Fig. 1, VITreeM and
MBFD are assigned of the allocations at t0 and t1, while
EAVIRA and MM are invoked for replication, resizing, consol-
idation, and release. In addition to allocation and reallocation
mechanisms, a discrete event simulator (for controlling and
distributing VI requests) was implemented1. VITreeM, MM
and MBFD mechanisms are not detailed on this paper. Further
information is available on [17] [3]. Finally, for performing
a fair analysis, MM and MBFD were updated for allocating
and reconfiguring virtual links (a shortest-path is calculated
considering the bandwidth requirement), and for respecting
the migration time SLA.

A. Metrics

Five metrics were selected for analysis and comparison
between the mechanisms: (i) Acceptance ratio of allocation
requests, identifying the number of requests which were
allocated. One can expects an increasing on this ratio as
the reallocation mechanisms consolidate DC load. (ii) Energy
consumption guided by the proportional sharing model [8].
This metric quantifies the beneficial impact introduced by
EAVIRA DC consolidation. (iii) DC load in terms of CPU,
storage, memory, and network bandwidth. (iv) SLA violations
representing the number of events violating the vCPU allo-
cation due to servers consolidation. (v) the number of VMs
migrations performed for load balancing and consolidation.
The last two metrics are proportionally calculated by the
number of accepted VIs.

B. Parameterization

1) Cloud DC: The DC topology adopted on out experi-
ments represents the Grid’5000 private cloud [25], specifically,
the Grenoble DC. On our simulations, servers were homoge-
neously defined, 107 in total, interconnected by 5 switches.
Each server was equipped with two processors (12 cores each),
256 GB RAM, 1 TB storage, and 1 Gbps networking interface.

1Source code available at: https://bitbucket.org/denivyruck/eavira

Switches were interconnected by 3 Gbps links. The amount
of energy consumption, required for calculating the cost, is
based on [8], and is used for all mechanisms (118.11 watts
and 202.43 watts for minimum and maximum consumption,
respectively).

2) VI Requests: Concerning the VI requests, Amazon EC2
and Google Computing Engine introduced the dynamic provi-
sion of Virtual Private Clouds (VPCs), composed of a subset of
access point rules and a set of VMs attached to it, composing
private local networks that are managed by the tenant. Each
VPC requires 1 virtual switch and 5 VMs. The capacity for
composing VI requests are based on commonly used m3.large
VM instances from Amazon EC2 [26] requiring 2 vCPUs, 8
GB RAM, and 32 GB storage. The bandwidth for communi-
cating VMs is selected between 5, 10, and 15 Mbps. A total of
300 VIs are requested and each VI remains hosted between 5
and 10 discrete intervals. For simulating elastic reconfiguration
requests, each VM can be upgraded/downgraded between
10% and 40% of its running capacity. The selection of VI
configurations follows a uniform distribution for each item.

3) Algorithms and Configurations: We compared MBFD
and VITreeM performing allocation. VITreeM was config-
ured using best-fit ordering of residual capacity for servers
selection for improving DC consolidation [17], while MM
usage thresholds were configured as 20% and 80% for under-
and over-utilization, respectively. Both algorithms perform the
allocation considering the total vCPUs utilization of VMs
(100%). Afterwards, each VM simulates an application with
variable workload, which is modeled to generate the utilization
of CPU (between 50% and 100%) according to a uniformly
distributed random variable. The migration anchor was defined
as 10% of VMs, while the maximum allowed SLA migration
time was uniformly defined between 60 and 600 seconds. In
order to predict the VM migration time, as summarized by
Alg. 1, VM operating system dirty-page rate is chosen between
100 and 1000, page size is 4096 bytes, and the migration
threshold is 30 rounds. Finally, the simulation runs by 1000
discrete internal and allocation, replication and delete requests
also follow a uniform arrival.

C. Simulation Results

The set of results comes from crossing allocation and
reallocation mechanisms. Energy consumption (Fig. 4)
is summarized as average and standard deviation with a
95% confidence interval, while acceptance ratio gives the
percentage of allocated VIs (Fig. 5) for the simulation.

Analyzing the energy consumption, Fig. 4 shows the to-
tal energy consumption and, based on proportional sharing
model [8], the provider’s fraction. When a physical resource
is completely idle, without host any virtual switch, machine or
link, it is considered deactivated and the energy consumption
is not accounted. Even allocating more VI requests, EAVIRA
reduced the DC energy consumption and the fraction attributed
to provider. The reduction is also observed when few VIs
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Fig. 4. DC energy consumption.

are allocated (using the VITreeM). In short, a provider using
EAVIRA reduces the total energy consumption almost 3
times while the provider’s fraction referent to energy cost is
decreased by 3.1 times.
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Fig. 5. Acceptance ratio of VI requests.

With regard to the acceptance ratio (Fig. 5), EAVIRA
combined with MBFD allocated almost 4 times more VI

requests faced to MM reallocation mechanism. Regardless
of the reallocation mechanism (EAVIRA or MM), VITreeM
resulted on lowest allocation ratio, indicating a barrier when
applied for this DC and VI topologies. The DC load, accounted
at each discrete event during the simulation, is summarized
by Table I. The first quarter (Q1), median (Q2), average
(x), third quarter (Q3), and maximum values are presented
for CPU, memory, storage and network bandwidth. The load
balancing and consolidation performed by EAVIRA increase
the allocation ratio and consequently the DC load. In all cases,
the DC load distribution is asymmetric. MBFD_EAVIRA is
more stable (without outliers) than other three. On the other
hand, MBFD_MM has the most amount of outliers.

TABLE I
DC LOAD: FIRST QUARTER (Q1), MEDIAN (Q2), AVERAGE (x), THIRD

QUARTER (Q3), AND MAXIMUM VALUES.

MBFD_MM MBFD_EAVIRA VITreeM_MM VITreeM_EAVIRA

vC
PU

(#
) Q1 226 325.8 27 19

Q2 236 (9%) 529.5 (20%) 29 (<1%) 20 (<1%)
x 217.1 580.9 28.5 19.9
Q3 244 876.2 30 22
Max 257 1077 34 23

R
A

M
(G

B
) Q1 840 1202 106 73

Q2 887 (3%) 1959 (7%) 114 (<1%) 81 (<1%)
x 820.6 2152.9 113.9 80.6
Q3 934 3246 122 89
Max 966 3979 130 89

St
or

ag
e

(G
B

) Q1 3288 4706 418 289
Q2 3479 (3%) 7671 (7%) 450 (<1%) 321 (<1%)
x 3220 8427.9 450.2 319.4
Q3 3670 12702 482 353
Max 3798 15571 514 353

N
et

.(
M

bp
s) Q1 2070 5030 170 50

Q2 2480 (2%) 8460 (7%) 210 (<1%) 50 (<1%)
x 2520.3 9242.7 201.0 53.5
Q3 2980 14045 250 70
Max 3530 18070 290 180

TABLE II
SLA VIOLATIONS AND VMS MIGRATIONS ACCOUNTED BY HOSTED VIS.

# MBFD_EAVIRA VITreeM_EAVIRA MBFD_MM VITreeM_MM

Mig. 10 0 34 287

SLA 562 97 0 9

However, a drawback from DC consolidation is the increase
on SLA violations, as summarized by Table II. The appli-
cation of EAVIRA increases the number of events in which
virtual resources lack on vCPU availability for an application
workload between 50% and 100% when compared to MM.
MM softens the situation by reactively migrating VMs around
the DC. However, even avoiding SLA violations, an elevated
number of VM migrations can harm the performance of hosted
applications. Surprisingly, with few VMs allocated atop a DC
(using VITreeM), MM exaggerates the number of migrations,
constantly moving the VIs.



V. CONSIDERATIONS & FUTURE WORK

Regardless of the number of servers composing a DC,
private and public cloud providers share the savings of energy
consumption as a common long-term objective. It is not new
the hardness of such a task. Moreover, the elastic provisioning
introduced by cloud computing increased the problem dimen-
sionality as a simple reconfiguration request can unbalance
the DC load and increase energy consumption. In this context,
the present work introduced EAVIRA, an energy-aware virtual
infrastructure reallocation algorithm. EAVIRA attends recon-
figuration and replication requests, complementary executing
VMs migrations when need. The DC consolidation is guided
by a proportional sharing of CPU usage and related energy
consumption. In short, the cost model enables a decrease
on provider’s fraction of total cost by proportionally sharing
among them the CPU energy consumption of VMs.

The experimental analysis investigated EAVIRA combined
with two online allocation algorithms, and compared the
performance faced to a VM migration-based mechanism.
EAVIRA increased the acceptance ratio of VI requests and
consolidated the DC resources. The promising results opened
opportunities for future work. Initially, an analysis considering
the tenant’s perspective can help on understanding the tread-
off between VM migrations and SLA violations. Potentially,
this decision should be guided by hosted application impact.
Complementary, the dynamism of virtual network load can
be used to guide the elastic provisioning of virtual links.
The update on virtual communication pattern can force the
migration of VMs to respect the SLA.

As future work we are working on: (i) A study comprising
other allocation mechanisms as well as experiments with
different DC topologies; and (ii) An analysis of the tread-
off between number of VMs migrations and SLA violations
quantifying the tenant’s perspective.
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